diff --git a/code/response_beat.py b/code/response_beat.py index 718ba8f..e57b1c7 100644 --- a/code/response_beat.py +++ b/code/response_beat.py @@ -1,30 +1,72 @@ import matplotlib.pyplot as plt import numpy as np -import scipy.stats as ss from read_chirp_data import * from utility import * from IPython import embed -# define sampling rate and data path -sampling_rate = 40 #kHz +# define data path and important parameters data_dir = "../data" -cut_window = 20 +sampling_rate = 40 #kHz +cut_window = 40 +cut_range = np.arange(-cut_window * sampling_rate, 0, 1) +window = 1 -data = ["2018-11-13-aa-invivo-1", "2018-11-13-ac-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", +''' +# norm: -150, 150, 300 +data = ["2018-11-13-aa-invivo-1", "2018-11-13-ac-invivo-1","2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1"] +# norm: -50 +data = ["2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1","2018-11-20-ad-invivo-1", + "2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", + "2018-11-20-ai-invivo-1"] + +''' +data = ["2018-11-14-aa-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-af-invivo-1", + "2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1", + "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1"] + +rates = {} + for dataset in data: spikes = read_chirp_spikes(os.path.join(data_dir, dataset)) df_map = map_keys(spikes) print(dataset) for df in df_map.keys(): - beat_duration = 1/df + ''' + if df == 50: + pass + else: + continue + ''' + + print(df) + rep_rates = [] + beat_duration = int(abs(1 / df) * 1000) beat_window = 0 - while beat_window + beat_duration <= cut_window: + while beat_window + beat_duration <= cut_window/2: beat_window = beat_window + beat_duration for rep in df_map[df]: for phase in spikes[rep]: - response = spikes[rep][phase] + # get spikes 40 ms before the chirp first chirp + spikes_to_cut = np.asarray(spikes[rep][phase]) + spikes_cut = spikes_to_cut[(spikes_to_cut > -cut_window) & (spikes_to_cut < 0)] + spikes_idx = np.round(spikes_cut * sampling_rate) + # also save as binary, 0 no spike, 1 spike + binary_spikes = np.isin(cut_range, spikes_idx) * 1 + smoothed_data = smooth(binary_spikes, window, 1 / sampling_rate) + train = smoothed_data[window:beat_window+window] + rep_rates.append(np.std(train)) break - #cut = response[response[]] + df_rate = np.mean(rep_rates) + if df in rates.keys(): + rates[df].append(df_rate) + else: + rates[df] = [df_rate] +fig, ax = plt.subplots() +for i, k in enumerate(sorted(rates.keys())): + ax.plot(np.ones(len(rates[k]))*k, rates[k], 'o') +#ax.legend(sorted(rates.keys()), loc='upper left', bbox_to_anchor=(1.04, 1)) +fig.tight_layout() +plt.show() diff --git a/code/spikes_analysis.py b/code/spikes_analysis.py index 1388074..9eb27e4 100644 --- a/code/spikes_analysis.py +++ b/code/spikes_analysis.py @@ -71,7 +71,7 @@ for dataset in data: # check the phase if phase[1] > phase_vec[idx] and phase[1] < phase_vec[idx+1]: - # get spikes between 50 ms before and after the chirp + # get spikes between 40 ms before and after the chirp spikes_to_cut = np.asarray(spikes[rep][phase]) spikes_cut = spikes_to_cut[(spikes_to_cut > -cut_window*2) & (spikes_to_cut < cut_window*2)] spikes_idx = np.round(spikes_cut*sampling_rate)