Merge branch 'master' of https://whale.am28.uni-tuebingen.de/git/jgrewe/gp_neurobio
This commit is contained in:
commit
258cd80a61
@ -8,7 +8,7 @@ from IPython import embed
|
||||
|
||||
|
||||
data_dir = "../data"
|
||||
dataset = "2018-11-13-ah-invivo-1"
|
||||
dataset = "2018-11-13-ad-invivo-1"
|
||||
data = ["2018-11-09-ad-invivo-1", "2018-11-09-ae-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ac-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1", "2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1", "2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1"]
|
||||
|
||||
|
||||
@ -41,7 +41,9 @@ for i in sort_df:
|
||||
chirp_spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
|
||||
df_map = map_keys(chirp_spikes)
|
||||
sort_df = sorted(df_map.keys())
|
||||
dct_phase = plot_std_chirp(sort_df, df_map, chirp_spikes, chirp_mods)
|
||||
example = [-50, 200, 400]
|
||||
|
||||
dct_phase = plot_std_chirp(example, df_map, chirp_spikes, chirp_mods)
|
||||
plt.show()
|
||||
plt.close('all')
|
||||
|
||||
|
@ -14,10 +14,16 @@ time,eod = read_baseline_eod(os.path.join(data_dir, dataset))
|
||||
zeit = np.asarray(time)
|
||||
|
||||
|
||||
plt.plot(zeit[0:1000], eod[0:1000])
|
||||
plt.title('A.lepto EOD', fontsize = 18)#Plottitelk
|
||||
plt.xlabel('time [ms]', fontsize = 16)#Achsentitel
|
||||
plt.ylabel('amplitude[mv]', fontsize = 16)#Achsentitel
|
||||
plt.xticks(fontsize = 14)
|
||||
plt.yticks(fontsize = 14)
|
||||
|
||||
inch_factor = 2.54
|
||||
fig, ax = plt.subplots(figsize=(20/inch_factor, 10/inch_factor))
|
||||
|
||||
plt.plot(zeit[0:1000], eod[0:1000], color = 'darkblue')
|
||||
plt.title('A.lepto EOD', fontsize = 24)#Plottitel
|
||||
plt.xlabel('time [ms]', fontsize = 22)#Achsentitel
|
||||
plt.ylabel('amplitude[mv]', fontsize = 22)#Achsentitel
|
||||
plt.tick_params(axis='both', which='major', labelsize = 22)
|
||||
ax.spines['right'].set_visible(False)
|
||||
ax.spines['top'].set_visible(False)
|
||||
fig.tight_layout()
|
||||
plt.show()
|
||||
|
@ -12,25 +12,28 @@ data_base = ("2018-11-09-ab-invivo-1", "2018-11-09-ad-invivo-1", "2018-11-13-aa-
|
||||
data_chirps = ("2018-11-09-ad-invivo-1", "2018-11-09-ae-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ac-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1", "2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1", "2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1")
|
||||
|
||||
dataset = "2018-11-13-ad-invivo-1"
|
||||
|
||||
inch_factor = 2.54
|
||||
|
||||
#for dataset in data_base:
|
||||
|
||||
spike_times = read_baseline_spikes(os.path.join(data_dir, dataset))
|
||||
spike_iv = np.diff(spike_times)
|
||||
x = np.arange(0.001, 0.01, 0.0001)
|
||||
plt.hist(spike_iv,x)
|
||||
|
||||
fig, ax = plt.subplots(figsize=(20/inch_factor, 10/inch_factor))
|
||||
plt.hist(spike_iv,x, color = 'darkblue')
|
||||
|
||||
mu = np.mean(spike_iv)
|
||||
sigma = np.std(spike_iv)
|
||||
cv = sigma/mu
|
||||
|
||||
plt.title('A.lepto ISI Histogramm', fontsize = 18)
|
||||
plt.xlabel('duration ISI[ms]', fontsize = 16)
|
||||
plt.ylabel('number of ISI', fontsize = 16)
|
||||
|
||||
plt.xticks(fontsize = 14)
|
||||
plt.yticks(fontsize = 14)
|
||||
plt.title('A.lepto ISI Histogramm', fontsize = 24)
|
||||
plt.xlabel('duration ISI[ms]', fontsize = 22)
|
||||
plt.ylabel('number of ISI', fontsize = 22)
|
||||
plt.tick_params(axis='both', which='major', labelsize = 22)
|
||||
ax.spines['right'].set_visible(False)
|
||||
ax.spines['top'].set_visible(False)
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
|
||||
|
||||
@ -47,6 +50,7 @@ sort_df = sorted(df_map.keys())
|
||||
dct_rate, over_r = spike_rates(sort_df, df_map, chirp_spikes)
|
||||
|
||||
plt.figure()
|
||||
fig, ax = plt.subplots(figsize=(20/inch_factor, 10/inch_factor))
|
||||
ls_mean = plot_df_spikes(sort_df, dct_rate)
|
||||
plt.show()
|
||||
|
||||
@ -54,14 +58,17 @@ plt.show()
|
||||
|
||||
#mittlere Feuerrate einer Frequenz auf Frequenz:
|
||||
|
||||
plt.figure()
|
||||
plt.plot(np.arange(0,len(ls_mean),1),ls_mean)
|
||||
fig, ax = plt.subplots(figsize=(20/inch_factor, 10/inch_factor))
|
||||
plt.plot(np.arange(0,len(ls_mean),1),ls_mean, color = 'darkblue')
|
||||
plt.scatter(np.arange(0,len(ls_mean),1), np.ones(len(ls_mean))*over_r, color = 'green')
|
||||
plt.title('Mean firing rate of a cell for a range of frequency differences', fontsize = 18)
|
||||
plt.title('Mean firing rate of a cell for a range of frequency differences', fontsize = 24)
|
||||
plt.xticks(np.arange(1,len(sort_df),1), (sort_df))
|
||||
plt.xlabel('Range of frequency differences [Hz]', fontsize = 16)
|
||||
plt.ylabel('Mean firing rate of the cell', fontsize = 16)
|
||||
plt.tick_params(axis='both', which='major', labelsize = 14)
|
||||
plt.xlabel('Range of frequency differences [Hz]', fontsize = 22)
|
||||
plt.ylabel('Mean firing rate of the cell', fontsize = 22)
|
||||
plt.tick_params(axis='both', which='major', labelsize = 18)
|
||||
ax.spines['right'].set_visible(False)
|
||||
ax.spines['top'].set_visible(False)
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
|
||||
|
||||
@ -70,12 +77,15 @@ plt.show()
|
||||
#wie viel Prozent der Anfangsrate macht die Adaption von Zellen aus?
|
||||
|
||||
adapt = adaptation_df(sort_df, dct_rate)
|
||||
plt.figure()
|
||||
fig, ax = plt.subplots(figsize=(20/inch_factor, 10/inch_factor))
|
||||
plt.boxplot(adapt)
|
||||
plt.title('Adaptation of cell firing rate during a trial', fontsize = 18)
|
||||
plt.xlabel('Cell', fontsize = 16)
|
||||
plt.ylabel('Adaptation size [Hz]', fontsize = 16)
|
||||
plt.tick_params(axis='both', which='major', labelsize = 14)
|
||||
plt.title('Adaptation of cell firing rate during a trial', fontsize = 24)
|
||||
plt.xlabel('Cell', fontsize = 22)
|
||||
plt.ylabel('Adaptation size [Hz]', fontsize = 22)
|
||||
plt.tick_params(axis='both', which='major', labelsize = 18)
|
||||
ax.spines['right'].set_visible(False)
|
||||
ax.spines['top'].set_visible(False)
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
|
||||
|
||||
|
@ -2,8 +2,10 @@ from read_baseline_data import *
|
||||
from read_chirp_data import *
|
||||
from utility import *
|
||||
import matplotlib.pyplot as plt
|
||||
import math
|
||||
import numpy as np
|
||||
|
||||
inch_factor = 2.54
|
||||
|
||||
def chirp_eod_plot(df_map, eod, times):
|
||||
#die äußere Schleife geht für alle Keys durch und somit durch alle dfs
|
||||
@ -11,7 +13,7 @@ def chirp_eod_plot(df_map, eod, times):
|
||||
|
||||
for i in df_map.keys():
|
||||
freq = list(df_map[i])
|
||||
fig,axs = plt.subplots(2, 2, sharex = True, sharey = True)
|
||||
fig, ax = plt.subplots(figsize=(20/inch_factor, 10/inch_factor))
|
||||
|
||||
for idx, k in enumerate(freq):
|
||||
ct = times[k]
|
||||
@ -19,22 +21,28 @@ def chirp_eod_plot(df_map, eod, times):
|
||||
zeit = e1[0]
|
||||
eods = e1[1]
|
||||
|
||||
if idx <= 3:
|
||||
axs[0, 0].plot(zeit, eods, color= 'blue', linewidth = 0.25)
|
||||
axs[0, 0].scatter(np.asarray(ct), np.ones(len(ct))*np.mean(eods), color = 'green', s= 22)
|
||||
elif 4<= idx <= 7:
|
||||
axs[0, 1].plot(zeit, eods, color= 'blue', linewidth = 0.25)
|
||||
axs[0, 1].scatter(np.asarray(ct), np.ones(len(ct))*np.mean(eods), color = 'green', s= 22)
|
||||
elif 8<= idx <= 11:
|
||||
axs[1, 0].plot(zeit, eods, color= 'blue', linewidth = 0.25)
|
||||
axs[1, 0].scatter(np.asarray(ct), np.ones(len(ct))*np.mean(eods), color = 'green', s= 22)
|
||||
if idx <= 1:
|
||||
ax.plot(zeit, eods, color= 'darkblue')
|
||||
ax.scatter(np.asarray(ct), np.ones(len(ct))*np.mean(eods), color = 'green', s= 22)
|
||||
#elif 4<= idx <= 7:
|
||||
# axs[0, 1].plot(zeit, eods, color= 'blue', linewidth = 0.25)
|
||||
# axs[0, 1].scatter(np.asarray(ct), np.ones(len(ct))*np.mean(eods), color = 'green', s= 22)
|
||||
#elif 8<= idx <= 11:
|
||||
# axs[1, 0].plot(zeit, eods, color= 'blue', linewidth = 0.25)
|
||||
# axs[1, 0].scatter(np.asarray(ct), np.ones(len(ct))*np.mean(eods), color = 'green', s= 22)
|
||||
else:
|
||||
axs[1, 1].plot(zeit, eods, color= 'blue', linewidth = 0.25)
|
||||
axs[1, 1].scatter(np.asarray(ct), np.ones(len(ct))*np.mean(eods), color = 'green', s= 22)
|
||||
continue
|
||||
#axs[1, 1].plot(zeit, eods, color= 'blue', linewidth = 0.25)
|
||||
#axs[1, 1].scatter(np.asarray(ct), np.ones(len(ct))*np.mean(eods), color = 'green', s= 22)
|
||||
|
||||
ax.set_ylabel('Amplitude [mV]', fontsize = 22)
|
||||
ax.set_xlabel('Time [ms]', fontsize = 22)
|
||||
ax.tick_params(axis='both', which='major', labelsize = 18)
|
||||
ax.spines['right'].set_visible(False)
|
||||
ax.spines['top'].set_visible(False)
|
||||
fig.suptitle('EOD for chirps', fontsize = 24)
|
||||
fig.tight_layout()
|
||||
|
||||
axs[0,1].set_ylabel('Amplitude [mV]')
|
||||
axs[1,0].set_xlabel('Time [ms]')
|
||||
fig.suptitle('EOD for chirps', fontsize = 16)
|
||||
|
||||
|
||||
|
||||
@ -69,7 +77,7 @@ def cut_chirps(freq, eod, times):
|
||||
|
||||
def plot_std_chirp(sort_df, df_map, chirp_spikes, chirp_mods):
|
||||
|
||||
plt.figure()
|
||||
fig, ax = plt.subplots(figsize=(20/inch_factor, 10/inch_factor))
|
||||
dct_phase = {}
|
||||
num_bin = 12
|
||||
phase_vec = np.arange(0, 1+1/num_bin, 1/num_bin)
|
||||
@ -82,10 +90,13 @@ def plot_std_chirp(sort_df, df_map, chirp_spikes, chirp_mods):
|
||||
dct_phase[i].append(phase[1])
|
||||
|
||||
for i in sort_df:
|
||||
plt.scatter(dct_phase[i], chirp_mods[i], label = i)
|
||||
plt.title('Change of std depending on the phase where the chirp occured')
|
||||
plt.xlabel('Phase')
|
||||
plt.ylabel('Standard deviation of the amplitude modulation')
|
||||
norm = np.asarray(dct_phase[i]) *2*math.pi
|
||||
plt.scatter(norm, chirp_mods[i], label = i, s = 22)
|
||||
plt.title('Change of std depending on the phase where the chirp occured', fontsize = 24)
|
||||
plt.xlabel('Phase', fontsize = 22)
|
||||
plt.ylabel('Standard deviation of the amplitude modulation', fontsize = 22)
|
||||
plt.xticks([0, math.pi/2, math.pi, math.pi*1.5, math.pi*2], ('0', '$\pi$ /2', '$\pi$', '1.5 $\pi$', '2$\pi$'))
|
||||
plt.tick_params(axis='both', which='major', labelsize = 18)
|
||||
plt.legend()
|
||||
return(dct_phase)
|
||||
|
||||
|
@ -43,6 +43,8 @@ def spike_rates(sort_df, df_map, chirp_spikes):
|
||||
|
||||
def plot_df_spikes(sort_df, dct_rate):
|
||||
#gibt die Feuerrate gegen die Frequenz aufgetragen
|
||||
inch_factor = 2.54
|
||||
fig, ax = plt.subplots(figsize=(20/inch_factor, 10/inch_factor))
|
||||
ls_mean = []
|
||||
for h in sort_df:
|
||||
mean = np.mean(dct_rate[h])
|
||||
@ -50,10 +52,13 @@ def plot_df_spikes(sort_df, dct_rate):
|
||||
plt.plot(np.arange(0,len(dct_rate[h]),1),dct_rate[h], label = h)
|
||||
|
||||
plt.legend()
|
||||
plt.title('Firing rate of the cell for all trials, sorted by df', fontsize = 18)
|
||||
plt.xlabel('# of trials', fontsize = 16)
|
||||
plt.ylabel('Instant firing rate of the cell', fontsize = 16)
|
||||
plt.tick_params(axis='both', which='major', labelsize = 14)
|
||||
plt.title('Firing rate of the cell for all trials, sorted by df', fontsize = 24)
|
||||
plt.xlabel('# of trials', fontsize = 22)
|
||||
plt.ylabel('Instant firing rate of the cell', fontsize = 22)
|
||||
plt.tick_params(axis='both', which='major', labelsize = 18)
|
||||
ax.spines['right'].set_visible(False)
|
||||
ax.spines['top'].set_visible(False)
|
||||
plt.tight_layout()
|
||||
return(ls_mean)
|
||||
|
||||
|
||||
|
@ -12,6 +12,7 @@ data_chirps = ("2018-11-09-ad-invivo-1", "2018-11-09-ae-invivo-1", "2018-11-09-a
|
||||
|
||||
|
||||
|
||||
inch_factor = 2.54
|
||||
data_rate_dict = {}
|
||||
for dataset in data_chirps:
|
||||
|
||||
@ -31,14 +32,17 @@ for dataset in data_chirps:
|
||||
rate = len(spikes)/ 1.2
|
||||
data_rate_dict[dataset].append(rate)
|
||||
|
||||
|
||||
fig, ax = plt.subplots(figsize=(20/inch_factor, 10/inch_factor))
|
||||
for dataset in data_rate_dict:
|
||||
plt.plot(data_rate_dict[dataset])
|
||||
plt.title('Test for sequence effects', fontsize = 20)
|
||||
plt.xlabel('Number of stimulus presentations', fontsize = 18)
|
||||
plt.ylabel('Firing rates of cells', fontsize = 18)
|
||||
plt.tick_params(axis='both', which='major', labelsize = 16)
|
||||
|
||||
plt.title('Test for sequence effects', fontsize = 24)
|
||||
plt.xlabel('Number of stimulus presentations', fontsize = 22)
|
||||
plt.ylabel('Firing rates of cells', fontsize = 22)
|
||||
plt.tick_params(axis='both', which='major', labelsize = 22)
|
||||
ax.spines['right'].set_visible(False)
|
||||
ax.spines['top'].set_visible(False)
|
||||
fig.tight_layout()
|
||||
plt.show()
|
||||
|
||||
|
||||
|
@ -9,8 +9,8 @@ from IPython import embed
|
||||
inch_factor = 2.54
|
||||
sampling_rate = 40000
|
||||
data_dir = '../data'
|
||||
dataset = '2018-11-09-ad-invivo-1'
|
||||
#dataset = '2018-11-13-aa-invivo-1'
|
||||
#dataset = '2018-11-09-ad-invivo-1'
|
||||
dataset = '2018-11-14-ad-invivo-1'
|
||||
|
||||
# read eod and time of baseline
|
||||
time, eod = read_baseline_eod(os.path.join(data_dir, dataset))
|
||||
|
@ -17,6 +17,7 @@ interspikeintervals = np.diff(spikes)*1000
|
||||
|
||||
fig, ax = plt.subplots(figsize=(20/inch_factor, 10/inch_factor))
|
||||
plt.hist(interspikeintervals, bins=np.arange(0, np.max(interspikeintervals), 0.0001), color='darkblue')
|
||||
#Titel fehlt!!
|
||||
plt.xlabel("time [ms]", fontsize = 22)
|
||||
plt.xticks(fontsize = 18)
|
||||
plt.ylabel("Number of \n Interspikeinterval", fontsize = 22)
|
||||
|
@ -8,29 +8,33 @@ from IPython import embed
|
||||
# define data path and important parameters
|
||||
data_dir = "../data"
|
||||
sampling_rate = 40 #kHz
|
||||
cut_window = 40
|
||||
cut_window = 100
|
||||
cut_range = np.arange(-cut_window * sampling_rate, 0, 1)
|
||||
window = 1
|
||||
|
||||
'''
|
||||
# norm: -150, 150, 300 aa, #ac, aj??
|
||||
data = ["2018-11-13-aa-invivo-1"]#, "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1",
|
||||
#"2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1"]
|
||||
data = ["2018-11-13-aa-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1",
|
||||
"2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1"]
|
||||
|
||||
'''
|
||||
# norm: -50
|
||||
data = ["2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1","2018-11-20-ad-invivo-1",
|
||||
"2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1",
|
||||
"2018-11-20-ai-invivo-1"]
|
||||
|
||||
data = ["2018-11-14-aa-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-af-invivo-1",
|
||||
"2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1",
|
||||
"2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1"]
|
||||
'''
|
||||
|
||||
data = ["2018-11-14-ad-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-am-invivo-1"]
|
||||
|
||||
#data = ["2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-ak-invivo-1"]
|
||||
#data = ["2018-11-09-ad-invivo-1", "2018-11-14-af-invivo-1"]
|
||||
|
||||
#data = ["2018-11-20-ad-invivo-1", "2018-11-13-ad-invivo-1"]
|
||||
#data = ["2018-11-09-ad-invivo-1"]
|
||||
|
||||
rates = {}
|
||||
|
||||
for dataset in data:
|
||||
rates[dataset] = {}
|
||||
print(dataset)
|
||||
# read baseline spikes
|
||||
base_spikes = read_baseline_spikes(os.path.join(data_dir, dataset))
|
||||
@ -66,21 +70,48 @@ for dataset in data:
|
||||
# also save as binary, 0 no spike, 1 spike
|
||||
binary_spikes = np.isin(cut_range, spikes_idx) * 1
|
||||
smoothed_data = smooth(binary_spikes, window, 1 / sampling_rate)
|
||||
train = smoothed_data[window:beat_window+window]
|
||||
norm_train = train*1000/spikerate
|
||||
rep_rates.append(np.std(norm_train))#/spikerate)
|
||||
#train = smoothed_data[window:beat_window+window]
|
||||
#norm_train = train*1000/spikerate
|
||||
#df_rate = np.std(norm_train)
|
||||
#rates[dataset][df] = [df_rate]
|
||||
rep_rates.append(np.std(smoothed_data))#/spikerate)
|
||||
'''
|
||||
if df in rates[dataset].keys():
|
||||
rates[dataset][df].append(np.std(norm_train))
|
||||
else:
|
||||
rates[dataset][df] = [np.std(norm_train)]
|
||||
'''
|
||||
break
|
||||
#break
|
||||
df_rate = np.mean(rep_rates)
|
||||
#df_rate = rep_rates
|
||||
rates[dataset][df] = df_rate
|
||||
|
||||
#embed()
|
||||
#exit()
|
||||
'''
|
||||
if df in rates.keys():
|
||||
rates[df].append(df_rate)
|
||||
rates[dataset][df].append(df_rate)
|
||||
else:
|
||||
rates[df] = [df_rate]
|
||||
rates[dataset][df] = [df_rate]
|
||||
'''
|
||||
|
||||
colors = ['royalblue', 'red', 'green', 'violet', 'orange', 'black', 'gray']
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
for i, cell in enumerate(rates.keys()):
|
||||
for j, df in enumerate(sorted(rates[cell].keys())):
|
||||
ax.plot(df, rates[cell][df], 'o', color=colors[i])
|
||||
#ax.legend(sorted(rates.keys()), loc='upper left', bbox_to_anchor=(1.04, 1))
|
||||
fig.tight_layout()
|
||||
plt.show()
|
||||
|
||||
'''
|
||||
fig, ax = plt.subplots()
|
||||
for i, k in enumerate(sorted(rates.keys())):
|
||||
ax.plot(np.ones(len(rates[k]))*k, rates[k], 'o')
|
||||
for i, cell in enumerate(rates.keys()):
|
||||
for j, df in enumerate(sorted(rates[cell].keys())):
|
||||
ax.plot(np.ones(len(rates[cell][df]))*df, rates[cell][df], 'o', color=colors[i])
|
||||
#ax.legend(sorted(rates.keys()), loc='upper left', bbox_to_anchor=(1.04, 1))
|
||||
fig.tight_layout()
|
||||
plt.show()
|
||||
'''
|
@ -8,7 +8,8 @@ from IPython import embed
|
||||
# define sampling rate and data path
|
||||
sampling_rate = 40 #kHz
|
||||
data_dir = "../data"
|
||||
dataset = "2018-11-13-ah-invivo-1"
|
||||
dataset = "2018-11-13-al-invivo-1"
|
||||
#dataset = "2018-11-09-ad-invivo-1"
|
||||
|
||||
'''
|
||||
data = ["2018-11-09-ad-invivo-1", "2018-11-09-ae-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-aa-invivo-1",
|
||||
@ -90,14 +91,14 @@ for deltaf in df_map.keys():
|
||||
|
||||
|
||||
# make dictionaries for csi and beat
|
||||
csi_trains = {}
|
||||
#csi_trains = {}
|
||||
csi_rates = {}
|
||||
beat = {}
|
||||
#beat = {}
|
||||
# for plotting and calculating iterate over delta f and phases
|
||||
for df in df_phase_time.keys():
|
||||
csi_trains[df] = []
|
||||
csi_rates[df] = []
|
||||
beat[df] = []
|
||||
#csi_trains[df] = {}
|
||||
csi_rates[df] = {}
|
||||
#beat[df] = []
|
||||
beat_duration = int(abs(1/df*1000)*sampling_rate) #steps
|
||||
beat_window = 0
|
||||
# beat window is at most 20 ms long, multiples of beat_duration
|
||||
@ -123,9 +124,12 @@ for df in df_phase_time.keys():
|
||||
|
||||
std_chirp = np.std(np.mean(train_chirp, axis=0))
|
||||
std_beat = np.std(np.mean(train_beat, axis=0))
|
||||
beat[df].append(std_beat)
|
||||
#beat[df].append(std_beat)
|
||||
csi_spikerate = (std_chirp - std_beat) / (std_chirp + std_beat)
|
||||
|
||||
csi_rates[df][phase] = np.mean(csi_spikerate)
|
||||
|
||||
'''
|
||||
rcs = []
|
||||
rbs = []
|
||||
for i, train in enumerate(train_chirp):
|
||||
@ -145,9 +149,7 @@ for df in df_phase_time.keys():
|
||||
|
||||
# add the csi to the dictionaries with the correct df and phase
|
||||
csi_trains[df].append(csi_train)
|
||||
csi_rates[df].append(np.mean(csi_spikerate))
|
||||
|
||||
'''
|
||||
# plot
|
||||
plot_trials = df_phase_time[df][phase]
|
||||
plot_trials_binary = np.mean(df_phase_binary[df][phase], axis=0)
|
||||
@ -170,37 +172,39 @@ for df in df_phase_time.keys():
|
||||
plt.show()
|
||||
'''
|
||||
|
||||
|
||||
colors = ['k', 'k', 'k',
|
||||
'k', 'k', 'k',
|
||||
'k', 'k', 'k',
|
||||
'k', 'k', 'firebrick']
|
||||
|
||||
sizes = [12, 12, 12,
|
||||
12, 12, 12,
|
||||
12, 12, 12,
|
||||
12, 12, 18]
|
||||
|
||||
upper_limit = np.max(sorted(csi_rates.keys()))+30
|
||||
lower_limit = np.min(sorted(csi_rates.keys()))-30
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
for i, k in enumerate(sorted(csi_rates.keys())):
|
||||
ax.scatter(np.ones(len(csi_rates[k]))*k, csi_rates[k], s=20)
|
||||
#ax.plot(i, np.mean(csi_rates[k]), 'o', markersize=15)
|
||||
#ax.legend(sorted(csi_rates.keys()), loc='upper left', bbox_to_anchor=(1.04, 1))
|
||||
ax.plot([lower_limit, upper_limit], np.zeros(2), 'silver', linewidth=2, linestyle='--')
|
||||
#ax.set_xticklabels(sorted(csi_rates.keys()))
|
||||
for i, df in enumerate(sorted(csi_rates.keys())):
|
||||
for j, phase in enumerate(sorted(csi_rates[df].keys())):
|
||||
ax.plot(df, csi_rates[df][phase], 'o', color=colors[j], ms=sizes[j])
|
||||
fig.tight_layout()
|
||||
plt.show()
|
||||
|
||||
'''
|
||||
fig, ax = plt.subplots()
|
||||
for i, k in enumerate(sorted(csi_trains.keys())):
|
||||
ax.plot(np.ones(len(csi_trains[k]))*i, csi_trains[k], 'o')
|
||||
#ax.plot(i, np.mean(csi_trains[k]), 'o', markersize=15)
|
||||
ax.legend(sorted(csi_trains.keys()), loc='upper left', bbox_to_anchor=(1.04, 1))
|
||||
ax.plot(np.arange(-1, len(csi_trains.keys())+1), np.zeros(len(csi_trains.keys())+2), 'silver', linewidth=2, linestyle='--')
|
||||
#ax.set_xticklabels(sorted(csi_trains.keys()))
|
||||
for i, k in enumerate(sorted(beat.keys())):
|
||||
ax.plot(np.ones(len(beat[k]))*k, beat[k], 'o')
|
||||
fig.tight_layout()
|
||||
plt.show()
|
||||
'''
|
||||
|
||||
'''
|
||||
fig, ax = plt.subplots()
|
||||
for i, k in enumerate(sorted(beat.keys())):
|
||||
ax.plot(np.ones(len(beat[k]))*i, beat[k], 'o')
|
||||
ax.legend(sorted(beat.keys()), loc='upper left', bbox_to_anchor=(1.04, 1))
|
||||
#ax.set_xticklabels(sorted(csi_trains.keys()))
|
||||
for i, k in enumerate(sorted(csi_trains.keys())):
|
||||
ax.plot(np.ones(len(csi_trains[k]))*i, csi_trains[k], 'o')
|
||||
ax.plot(np.arange(-1, len(csi_trains.keys())+1), np.zeros(len(csi_trains.keys())+2), 'silver', linewidth=2, linestyle='--')
|
||||
fig.tight_layout()
|
||||
plt.show()
|
||||
'''
|
62
code/spikes_beat.py
Normal file
62
code/spikes_beat.py
Normal file
@ -0,0 +1,62 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from read_chirp_data import *
|
||||
from read_baseline_data import *
|
||||
from utility import *
|
||||
from IPython import embed
|
||||
|
||||
# define data path and important parameters
|
||||
data_dir = "../data"
|
||||
sampling_rate = 40 #kHz
|
||||
cut_window = 100
|
||||
cut_range = np.arange(-cut_window * sampling_rate, 0, 1)
|
||||
window = 1
|
||||
#dataset = "2018-11-13-ad-invivo-1"
|
||||
#dataset = "2018-11-13-aj-invivo-1"
|
||||
#dataset = "2018-11-13-ak-invivo-1" #al
|
||||
#dataset = "2018-11-14-ad-invivo-1"
|
||||
dataset = "2018-11-20-af-invivo-1"
|
||||
|
||||
base_spikes = read_baseline_spikes(os.path.join(data_dir, dataset))
|
||||
base_spikes = base_spikes[1000:2000]
|
||||
spikerate = len(base_spikes) / base_spikes[-1]
|
||||
print(spikerate)
|
||||
|
||||
# read spikes during chirp stimulation
|
||||
spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
|
||||
df_map = map_keys(spikes)
|
||||
|
||||
rates = {}
|
||||
# iterate over df
|
||||
for deltaf in df_map.keys():
|
||||
rates[deltaf] = {}
|
||||
beat_duration = int(abs(1 / deltaf) * 1000)
|
||||
beat_window = 0
|
||||
while beat_window + beat_duration <= cut_window/2:
|
||||
beat_window = beat_window + beat_duration
|
||||
for x, repetition in enumerate(df_map[deltaf]):
|
||||
for phase in spikes[repetition]:
|
||||
# get spikes some ms before the chirp first chirp
|
||||
spikes_to_cut = np.asarray(spikes[repetition][phase])
|
||||
spikes_cut = spikes_to_cut[(spikes_to_cut > -cut_window) & (spikes_to_cut < 0)]
|
||||
spikes_idx = np.round(spikes_cut * sampling_rate)
|
||||
# also save as binary, 0 no spike, 1 spike
|
||||
binary_spikes = np.isin(cut_range, spikes_idx) * 1
|
||||
smoothed_data = smooth(binary_spikes, window, 1 / sampling_rate)
|
||||
#train = smoothed_data[window*sampling_rate:beat_window*sampling_rate+window*sampling_rate]
|
||||
modulation = np.std(smoothed_data)
|
||||
rates[deltaf][x] = modulation
|
||||
break
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
for i, df in enumerate(sorted(rates.keys())):
|
||||
for j, rep in enumerate(rates[df].keys()):
|
||||
if j == 15:
|
||||
farbe = 'royalblue'
|
||||
gro = 18
|
||||
else:
|
||||
farbe = 'k'
|
||||
gro = 12
|
||||
ax.plot(df, rates[df][rep], marker='o', color=farbe, ms=gro)
|
||||
fig.tight_layout()
|
||||
plt.show()
|
102
code/spikes_chirp.py
Normal file
102
code/spikes_chirp.py
Normal file
@ -0,0 +1,102 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from read_chirp_data import *
|
||||
from utility import *
|
||||
from IPython import embed
|
||||
|
||||
# define sampling rate and data path
|
||||
sampling_rate = 40 #kHz
|
||||
data_dir = "../data"
|
||||
dataset = "2018-11-13-al-invivo-1"
|
||||
|
||||
# parameters for binning, smoothing and plotting
|
||||
cut_window = 20
|
||||
chirp_duration = 14 #ms
|
||||
neuronal_delay = 5 #ms
|
||||
chirp_start = int((-chirp_duration / 2 + neuronal_delay + cut_window * 2) * sampling_rate) #index
|
||||
chirp_end = int((chirp_duration / 2 + neuronal_delay + cut_window * 2) * sampling_rate) #index
|
||||
number_bins = 12
|
||||
window = 1 #ms
|
||||
time_axis = np.arange(-cut_window*2, cut_window*2, 1/sampling_rate) #steps
|
||||
spike_bins = np.arange(-cut_window*2, cut_window*2) #ms
|
||||
|
||||
colors = ['k', 'k', 'k',
|
||||
'k', 'k', 'k',
|
||||
'k', 'k', 'k',
|
||||
'k', 'k', 'firebrick']
|
||||
|
||||
sizes = [12, 12, 12,
|
||||
12, 12, 12,
|
||||
12, 12, 12,
|
||||
12, 12, 18]
|
||||
|
||||
# differentiate between phases
|
||||
phase_vec = np.arange(0, 1 + 1 / number_bins, 1 / number_bins)
|
||||
cut_range = np.arange(-cut_window*2*sampling_rate, cut_window*2*sampling_rate, 1)
|
||||
|
||||
df_phase_binary = {}
|
||||
|
||||
spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
|
||||
df_map = map_keys(spikes)
|
||||
|
||||
for deltaf in df_map.keys():
|
||||
df_phase_binary[deltaf] = {}
|
||||
for rep in df_map[deltaf]:
|
||||
chirp_size = int(rep[-1].strip('Hz'))
|
||||
if chirp_size == 150:
|
||||
continue
|
||||
for phase in spikes[rep]:
|
||||
for idx in np.arange(number_bins):
|
||||
# check the phase
|
||||
if phase[1] > phase_vec[idx] and phase[1] < phase_vec[idx+1]:
|
||||
|
||||
# get spikes between 40 ms before and after the chirp
|
||||
spikes_to_cut = np.asarray(spikes[rep][phase])
|
||||
spikes_cut = spikes_to_cut[(spikes_to_cut > -cut_window*2) & (spikes_to_cut < cut_window*2)]
|
||||
spikes_idx = np.round(spikes_cut*sampling_rate)
|
||||
# save as binary, 0 no spike, 1 spike
|
||||
binary_spikes = np.isin(cut_range, spikes_idx)*1
|
||||
|
||||
# add the spikes to the dictionary with the correct df and phase
|
||||
if idx in df_phase_binary[deltaf].keys():
|
||||
df_phase_binary[deltaf][idx] = np.vstack((df_phase_binary[deltaf][idx], binary_spikes))
|
||||
else:
|
||||
df_phase_binary[deltaf][idx] = binary_spikes
|
||||
|
||||
csi_rates = {}
|
||||
|
||||
for df in df_phase_binary.keys():
|
||||
csi_rates[df] = {}
|
||||
beat_duration = int(abs(1/df*1000)*sampling_rate) #steps
|
||||
beat_window = 0
|
||||
# beat window is at most 20 ms long, multiples of beat_duration
|
||||
while beat_window+beat_duration <= cut_window*sampling_rate:
|
||||
beat_window = beat_window+beat_duration
|
||||
for phase in df_phase_binary[df].keys():
|
||||
# csi calculation
|
||||
trials_binary = df_phase_binary[df][phase]
|
||||
|
||||
train_chirp = []
|
||||
train_beat = []
|
||||
for i, trial in enumerate(trials_binary):
|
||||
smoothed_trial = smooth(trial, window, 1/sampling_rate)
|
||||
train_chirp.append(smoothed_trial[chirp_start:chirp_end])
|
||||
train_beat.append(smoothed_trial[chirp_start-beat_window:chirp_start])
|
||||
|
||||
std_chirp = np.std(np.mean(train_chirp, axis=0))
|
||||
std_beat = np.std(np.mean(train_beat, axis=0))
|
||||
csi_spikerate = (std_chirp - std_beat) / (std_chirp + std_beat)
|
||||
|
||||
csi_rates[df][phase] = np.mean(csi_spikerate)
|
||||
|
||||
|
||||
upper_limit = np.max(sorted(csi_rates.keys()))+30
|
||||
lower_limit = np.min(sorted(csi_rates.keys()))-30
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ax.plot([lower_limit, upper_limit], np.zeros(2), 'silver', linewidth=2, linestyle='--')
|
||||
for i, df in enumerate(sorted(csi_rates.keys())):
|
||||
for j, phase in enumerate(sorted(csi_rates[df].keys())):
|
||||
ax.plot(df, csi_rates[df][phase], 'o', color=colors[j], ms=sizes[j])
|
||||
fig.tight_layout()
|
||||
plt.show()
|
Loading…
Reference in New Issue
Block a user