This commit is contained in:
Ramona 2018-11-29 17:06:22 +01:00
commit 96dede4e4d
12 changed files with 338 additions and 159 deletions

View File

@ -8,45 +8,50 @@ from IPython import embed
data_dir = "../data"
data = ("2018-11-09-ad-invivo-1", "2018-11-09-ae-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ac-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1", "2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1", "2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1")
dataset = "2018-11-13-ad-invivo-1"
data = ["2018-11-09-ad-invivo-1", "2018-11-09-ae-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ac-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1", "2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1", "2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1"]
#for dataset in data:
for dataset in data:
print(dataset)
eod = read_chirp_eod(os.path.join(data_dir, dataset))
times = read_chirp_times(os.path.join(data_dir, dataset))
df_map = map_keys(eod)
sort_df = sorted(df_map.keys())
eod = read_chirp_eod(os.path.join(data_dir, dataset))
times = read_chirp_times(os.path.join(data_dir, dataset))
df_map = map_keys(eod)
sort_df = sorted(df_map.keys())
chirp_eod_plot(df_map, eod, times)
eods = chirp_eod_plot(df_map, eod, times)
plt.show()
plt.close('all')
chirp_mods = []
beat_mods = []
for i in sort_df:
freq = list(df_map[i])
ls_mod, beat_mod = cut_chirps(freq, eod, times)
chirp_mods.append(ls_mod)
beat_mods.append(beat_mod)
chirp_mods = {}
beat_mods = []
for i in sort_df:
chirp_mods[i] = []
freq = list(df_map[i])
ls_mod, beat_mod = cut_chirps(freq, eod, times)
chirp_mods[i].append(ls_mod)
beat_mods.append(beat_mod)
#Chirps einer Phase zuordnen - zusammen plotten
chirp_spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
df_map = map_keys(chirp_spikes)
sort_df = sorted(df_map.keys())
#plot_std_chirp(sort_df, df_map, chirp_spikes, chirp_mods)
chirp_spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
df_map = map_keys(chirp_spikes)
sort_df = sorted(df_map.keys())
example = [-50, 200, 400]
dct_phase = plot_std_chirp(example, df_map, chirp_spikes, chirp_mods)
plt.show()
plt.close('all')
'''
#Vatriablen speichern, die man für die Übersicht aller Zellen braucht
name = str(dataset.strip('invivo-1'))
name = str(dataset.replace('-invivo-1', ''))
print('saving ../results/Chirpcut/Cc_' + name + '.dat')
f = open('../results/Chirpcut/Cc_' + name + '.dat' , 'w')
f.write(str(sort_df))
f.write(str(df_map))
@ -56,3 +61,4 @@ for dataset in data:
#f.write(str(chirp_mods))
#f.write(str(beat_mods))
f.close()
'''

View File

@ -8,14 +8,22 @@ from IPython import embed #Funktionen importieren
data_dir = "../data"
dataset = "2018-11-09-aa-invivo-1"
#data = ("2018-11-09-aa-invivo-1", "2018-11-09-ab-invivo-1", "2018-11-09-ac-invivo-1", "2018-11-09-ad-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ab-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-09-af-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ab-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-ae-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-aj-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1", "2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1"," 2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1")
time,eod = read_baseline_eod(os.path.join(data_dir, dataset))
zeit = np.asarray(time)
plt.plot(zeit[0:1000], eod[0:1000])
plt.title('A.lepto EOD')#Plottitelk
plt.xlabel('time [ms]', fontsize = 12)#Achsentitel
plt.ylabel('amplitude[mv]', fontsize = 12)#Achsentitel
plt.xticks(fontsize = 12)
plt.yticks(fontsize = 12)
inch_factor = 2.54
fig, ax = plt.subplots(figsize=(20/inch_factor, 10/inch_factor))
plt.plot(zeit[0:1000], eod[0:1000], color = 'darkblue')
plt.title('A.lepto EOD', fontsize = 24)#Plottitel
plt.xlabel('time [ms]', fontsize = 22)#Achsentitel
plt.ylabel('amplitude[mv]', fontsize = 22)#Achsentitel
plt.tick_params(axis='both', which='major', labelsize = 22)
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
fig.tight_layout()
plt.show()

View File

@ -3,7 +3,7 @@ from read_chirp_data import *
from func_spike import *
import matplotlib.pyplot as plt
import numpy as np
from IPython import embed #Funktionen imposrtieren
from IPython import embed #Funktionen importieren
@ -11,77 +11,89 @@ data_dir = "../data"
data_base = ("2018-11-09-ab-invivo-1", "2018-11-09-ad-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ab-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-af-invivo-1", "2018-11-13-ag-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-ab-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-ae-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-aj-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1", "2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1")
data_chirps = ("2018-11-09-ad-invivo-1", "2018-11-09-ae-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ac-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1", "2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1", "2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1")
dataset = "2018-11-13-ad-invivo-1"
inch_factor = 2.54
#for dataset in data_base:
'''
for dataset in data_base:
print(dataset)
spike_times = read_baseline_spikes(os.path.join(data_dir, dataset))
spike_iv = np.diff(spike_times)
x = np.arange(0.001, 0.01, 0.0001)
plt.hist(spike_iv,x)
spike_times = read_baseline_spikes(os.path.join(data_dir, dataset))
spike_iv = np.diff(spike_times)
x = np.arange(0.001, 0.01, 0.0001)
mu = np.mean(spike_iv)
sigma = np.std(spike_iv)
cv = sigma/mu
fig, ax = plt.subplots(figsize=(20/inch_factor, 10/inch_factor))
plt.hist(spike_iv,x, color = 'darkblue')
plt.title('A.lepto ISI Histogramm', fontsize = 14)
plt.xlabel('duration ISI[ms]', fontsize = 12)
plt.ylabel('number of ISI', fontsize = 12)
mu = np.mean(spike_iv)
sigma = np.std(spike_iv)
cv = sigma/mu
plt.xticks(fontsize = 12)
plt.yticks(fontsize = 12)
'''
plt.title('A.lepto ISI Histogramm', fontsize = 24)
plt.xlabel('duration ISI[ms]', fontsize = 22)
plt.ylabel('number of ISI', fontsize = 22)
plt.tick_params(axis='both', which='major', labelsize = 22)
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
plt.tight_layout()
plt.show()
for dataset in data_chirps:
#for dataset in data_chirps:
#Nyquist-Theorem Plot:
print(dataset)
chirp_spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
times = read_chirp_times(os.path.join(data_dir, dataset))
eod = read_chirp_eod(os.path.join(data_dir, dataset))
df_map = map_keys(chirp_spikes)
sort_df = sorted(df_map.keys())
dct_rate, over_r = spike_rates(sort_df, df_map, chirp_spikes)
chirp_spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
times = read_chirp_times(os.path.join(data_dir, dataset))
eod = read_chirp_eod(os.path.join(data_dir, dataset))
df_map = map_keys(chirp_spikes)
sort_df = sorted(df_map.keys())
plt.figure()
ls_mean = plot_df_spikes(sort_df, dct_rate)
dct_rate, over_r = spike_rates(sort_df, df_map, chirp_spikes)
plt.figure()
fig, ax = plt.subplots(figsize=(20/inch_factor, 10/inch_factor))
ls_mean = plot_df_spikes(sort_df, dct_rate)
plt.show()
#mittlere Feuerrate einer Frequenz auf Frequenz:
plt.figure()
plt.plot(np.arange(0,len(ls_mean),1),ls_mean)
plt.scatter(np.arange(0,len(ls_mean),1), np.ones(len(ls_mean))*over_r)
plt.title('Mean firing rate of a cell for a range of frequency differences')
plt.xticks(np.arange(1,len(sort_df),1), (sort_df))
plt.xlabel('Range of frequency differences [Hz]')
plt.ylabel('Mean firing rate of the cell')
fig, ax = plt.subplots(figsize=(20/inch_factor, 10/inch_factor))
plt.plot(np.arange(0,len(ls_mean),1),ls_mean, color = 'darkblue')
plt.scatter(np.arange(0,len(ls_mean),1), np.ones(len(ls_mean))*over_r, color = 'green')
plt.title('Mean firing rate of a cell for a range of frequency differences', fontsize = 24)
plt.xticks(np.arange(1,len(sort_df),1), (sort_df))
plt.xlabel('Range of frequency differences [Hz]', fontsize = 22)
plt.ylabel('Mean firing rate of the cell', fontsize = 22)
plt.tick_params(axis='both', which='major', labelsize = 18)
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
plt.tight_layout()
plt.show()
#Adaption der Zellen:
#wie viel Prozent der Anfangsrate macht die Adaption von Zellen aus?
adapt = adaptation_df(sort_df, dct_rate)
plt.figure()
plt.boxplot(adapt)
plt.title('Adaptation of cell firing rate during a trial')
plt.xlabel('Cell')
plt.ylabel('Adaptation size [Hz]')
adapt = adaptation_df(sort_df, dct_rate)
fig, ax = plt.subplots(figsize=(20/inch_factor, 10/inch_factor))
plt.boxplot(adapt)
plt.title('Adaptation of cell firing rate during a trial', fontsize = 24)
plt.xlabel('Cell', fontsize = 22)
plt.ylabel('Adaptation size [Hz]', fontsize = 22)
plt.tick_params(axis='both', which='major', labelsize = 18)
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
plt.tight_layout()
plt.show()
'''
#Vatriablen speichern, die man für die Übersicht aller Zellen braucht
name = str(dataset.strip('invivo-1'))
name = str(dataset.replace('-invivo-1', ''))
f = open('../results/Nyquist/Ny_' + name + '.txt' , 'w')
f.write(str(sort_df))
f.write(str(df_map))
@ -91,3 +103,4 @@ for dataset in data_chirps:
f.write(str(over_r))
f.write(str(adapt))
f.close()
'''

96
code/eod_chirp_beat.py Normal file
View File

@ -0,0 +1,96 @@
import numpy as np
import matplotlib.pyplot as plt
import thunderfish.peakdetection as pd
def create_chirp(eodf):
stimulusrate = eodf # the eod frequency of the fake fish
currentchirptimes = [0.0]
chirpwidth = 0.014 # ms
chirpsize = 100.
chirpampl = 0.02
chirpkurtosis = 1.
p = 0.
stepsize = 0.00001
time = np.arange(-0.05, 0.05, stepsize)
signal = np.zeros(time.shape)
ampl = np.ones(time.shape)
freq = np.ones(time.shape)
ck = 0
csig = 0.5 * chirpwidth / np.power(2.0*np.log(10.0), 0.5/chirpkurtosis)
for k, t in enumerate(time):
a = 1.
f = stimulusrate
if ck < len(currentchirptimes):
if np.abs(t - currentchirptimes[ck]) < 2.0 * chirpwidth:
x = t - currentchirptimes[ck]
g = np.exp(-0.5 * (x/csig)**2)
f = chirpsize * g + stimulusrate
a *= 1.0 - chirpampl * g
elif t > currentchirptimes[ck] + 2.0 * chirpwidth:
ck += 1
freq[k] = f
ampl[k] = a
p += f * stepsize
signal[k] = a * np.sin(6.28318530717959 * p)
return time, signal
def plot_chirp(eodf, eodf1, phase, axis):
time, chirp_eod = create_chirp(eodf)
eod = np.sin(time * 2 * np.pi * eodf1 + phase)
y = chirp_eod * 0.4 + eod
p, t = pd.detect_peaks(y, 0.1)
axis.plot(time*1000, y, color = 'royalblue')
axis.plot(time[p]*1000, (y)[p], lw=2, color='k')
axis.plot(time[t]*1000, (y)[t], lw=2, color='k')
axis.spines["top"].set_visible(False)
axis.spines["right"].set_visible(False)
inch_factor = 2.54
fig = plt.figure(figsize=(20 / inch_factor, 10 / inch_factor))
ax1 = fig.add_subplot(221)
ax2 = fig.add_subplot(222)
ax3 = fig.add_subplot(223)
ax4 = fig.add_subplot(224)
plot_chirp(600, 650, 0, ax2)
plot_chirp(600, 650, np.pi, ax4)
plot_chirp(600, 620, 0, ax1)
plot_chirp(600, 620, np.pi, ax3)
ax1.set_ylabel('EOD [mV]', fontsize=22)
ax1.set_title('$\Delta$f = 20 Hz', fontsize = 18)
ax1.yaxis.set_tick_params(labelsize=18)
ax1.set_xticklabels([])
ax2.set_title('$\Delta$f = 50 Hz', fontsize = 18)
ax2.set_xticklabels([])
ax2.set_yticklabels([])
ax3.set_ylabel('EOD [mV]', fontsize=22)
ax3.xaxis.set_tick_params(labelsize=18)
ax3.yaxis.set_tick_params(labelsize=18)
ax3.set_xlabel('time [ms]', fontsize=22)
ax4.set_xlabel('time [ms]', fontsize=22)
ax4.xaxis.set_tick_params(labelsize=18)
ax4.set_yticklabels([])
fig.tight_layout()
#plt.show()
plt.savefig('chirps_while_beat.png')

View File

@ -2,38 +2,43 @@ from read_baseline_data import *
from IPython import embed
import matplotlib.pyplot as plt
import numpy as np
import thunderfish.peakdetection as pd
from IPython import embed
## beat
data_dir = '../data'
dataset = '2018-11-09-ad-invivo-1'
inch_factor = 2.54
time, eod = read_baseline_eod(os.path.join(data_dir, dataset))
eod_norm = eod - np.mean(eod)
eod_norm = eod_norm[10000:20000]
x = np.arange(0., len(eod_norm))
# calculate eod times and indices by zero crossings
threshold = 0
shift_eod = np.roll(eod_norm, 1)
eod_times = time[(eod_norm >= threshold) & (shift_eod < threshold)]
y = np.sin(time[10000:20000]*2*np.pi*600)*0.5
ampl = eod_norm + y
p, t = pd.detect_peaks(ampl, 0.1)
#x = eod_times*40000
x = np.arange(0., len(eod_times)-1)
y = np.sin(x*2*np.pi*600)
eod_freq_beat = 1/(np.diff(eod_times) + y)
time_axis = np.arange(len(ampl))
# glätten
kernel = np.ones(7)/7
smooth_eod_freq_beat = np.convolve(eod_freq_beat, kernel, mode = 'valid')
time_axis = np.arange(len(smooth_eod_freq_beat))
plt.plot(time_axis, smooth_eod_freq_beat)
fig, ax = plt.subplots(figsize=(20/inch_factor, 10/inch_factor))
plt.plot(time[10000:20000], ampl)
plt.plot(time[10000:20000][p], ampl[p], lw=2, color='k')
plt.plot(time[10000:20000][t], ampl[t], lw=2, color='k')
ax.set_xlabel("time [ms]", fontsize = 22)
plt.xticks(fontsize = 18)
ax.set_ylabel("eod amplitude [mV]", fontsize = 22)
plt.yticks(fontsize = 18)
ax.spines["top"].set_visible(False)
ax.spines["right"].set_visible(False)
fig.tight_layout()
plt.show()
#plt.savefig('beat.png')
#eod_freq_beat = eod_freq_normal + y
#smooth_eod_freq_beat = np.convolve(eod_freq_beat, kernel, mode = 'valid')
#fig = plt.plot(time_axis,smooth_eod_freq_beat)
#plt.xlabel("time [ms]")
#plt.ylabel("eod frequency [mV]")
#plt.show()

View File

@ -2,8 +2,10 @@ from read_baseline_data import *
from read_chirp_data import *
from utility import *
import matplotlib.pyplot as plt
import math
import numpy as np
inch_factor = 2.54
def chirp_eod_plot(df_map, eod, times):
#die äußere Schleife geht für alle Keys durch und somit durch alle dfs
@ -11,7 +13,7 @@ def chirp_eod_plot(df_map, eod, times):
for i in df_map.keys():
freq = list(df_map[i])
fig,axs = plt.subplots(2, 2, sharex = True, sharey = True)
fig, ax = plt.subplots(figsize=(20/inch_factor, 10/inch_factor))
for idx, k in enumerate(freq):
ct = times[k]
@ -19,25 +21,29 @@ def chirp_eod_plot(df_map, eod, times):
zeit = e1[0]
eods = e1[1]
if idx <= 3:
axs[0, 0].plot(zeit, eods, color= 'blue', linewidth = 0.25)
axs[0, 0].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22)
elif 4<= idx <= 7:
axs[0, 1].plot(zeit, eods, color= 'blue', linewidth = 0.25)
axs[0, 1].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22)
elif 8<= idx <= 11:
axs[1, 0].plot(zeit, eods, color= 'blue', linewidth = 0.25)
axs[1, 0].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22)
else:
axs[1, 1].plot(zeit, eods, color= 'blue', linewidth = 0.25)
axs[1, 1].scatter(np.asarray(ct), np.ones(len(ct))*3, color = 'green', s= 22)
fig.suptitle('EOD for chirps', fontsize = 16)
axs[0,0].set_ylabel('Amplitude [mV]')
axs[0,1].set_xlabel('Amplitude [mV]')
axs[1,0].set_xlabel('Time [ms]')
axs[1,1].set_xlabel('Time [ms]')
plt.close()
if idx <= 1:
ax.plot(zeit, eods, color= 'darkblue')
ax.scatter(np.asarray(ct), np.ones(len(ct))*np.mean(eods), color = 'green', s= 22)
#elif 4<= idx <= 7:
# axs[0, 1].plot(zeit, eods, color= 'blue', linewidth = 0.25)
# axs[0, 1].scatter(np.asarray(ct), np.ones(len(ct))*np.mean(eods), color = 'green', s= 22)
#elif 8<= idx <= 11:
# axs[1, 0].plot(zeit, eods, color= 'blue', linewidth = 0.25)
# axs[1, 0].scatter(np.asarray(ct), np.ones(len(ct))*np.mean(eods), color = 'green', s= 22)
else:
continue
#axs[1, 1].plot(zeit, eods, color= 'blue', linewidth = 0.25)
#axs[1, 1].scatter(np.asarray(ct), np.ones(len(ct))*np.mean(eods), color = 'green', s= 22)
ax.set_ylabel('Amplitude [mV]', fontsize = 22)
ax.set_xlabel('Time [ms]', fontsize = 22)
ax.tick_params(axis='both', which='major', labelsize = 18)
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
fig.suptitle('EOD for chirps', fontsize = 24)
fig.tight_layout()
@ -60,16 +66,18 @@ def cut_chirps(freq, eod, times):
ls_beat.extend(beat_cut)
beat_mod = np.std(ls_beat) #Std vom Bereich vor dem Chirp
plt.figure()
plt.scatter(np.arange(0,len(ls_mod),1), ls_mod)
plt.scatter(np.arange(0,len(ls_mod),1), np.ones(len(ls_mod))*beat_mod, color = 'violet')
plt.close()
#plt.figure()
#plt.scatter(np.arange(0,len(ls_mod),1), ls_mod)
#plt.scatter(np.arange(0,len(ls_mod),1), np.ones(len(ls_mod))*beat_mod, color = 'violet')
return(ls_mod, beat_mod)
def plot_std_chirp(sort_df, df_map, chirp_spikes, ls_mod):
plt.figure()
def plot_std_chirp(sort_df, df_map, chirp_spikes, chirp_mods):
fig, ax = plt.subplots(figsize=(20/inch_factor, 10/inch_factor))
dct_phase = {}
num_bin = 12
phase_vec = np.arange(0, 1+1/num_bin, 1/num_bin)
@ -80,8 +88,15 @@ def plot_std_chirp(sort_df, df_map, chirp_spikes, ls_mod):
for k in freq:
for phase in chirp_spikes[k]:
dct_phase[i].append(phase[1])
plt.scatter(dct_phase[i], ls_mod[i])
plt.title('Change of std depending on the phase where the chirp occured')
plt.close()
for i in sort_df:
norm = np.asarray(dct_phase[i]) *2*math.pi
plt.scatter(norm, chirp_mods[i], label = i, s = 22)
plt.title('Change of std depending on the phase where the chirp occured', fontsize = 24)
plt.xlabel('Phase', fontsize = 22)
plt.ylabel('Standard deviation of the amplitude modulation', fontsize = 22)
plt.xticks([0, math.pi/2, math.pi, math.pi*1.5, math.pi*2], ('0', '$\pi$ /2', '$\pi$', '1.5 $\pi$', '2$\pi$'))
plt.tick_params(axis='both', which='major', labelsize = 18)
plt.legend()
return(dct_phase)

View File

@ -43,6 +43,8 @@ def spike_rates(sort_df, df_map, chirp_spikes):
def plot_df_spikes(sort_df, dct_rate):
#gibt die Feuerrate gegen die Frequenz aufgetragen
inch_factor = 2.54
fig, ax = plt.subplots(figsize=(20/inch_factor, 10/inch_factor))
ls_mean = []
for h in sort_df:
mean = np.mean(dct_rate[h])
@ -50,9 +52,13 @@ def plot_df_spikes(sort_df, dct_rate):
plt.plot(np.arange(0,len(dct_rate[h]),1),dct_rate[h], label = h)
plt.legend()
plt.title('Firing rate of the cell for all trials, sorted by df')
plt.xlabel('# of trials')
plt.ylabel('Instant firing rate of the cell')
plt.title('Firing rate of the cell for all trials, sorted by df', fontsize = 24)
plt.xlabel('# of trials', fontsize = 22)
plt.ylabel('Instant firing rate of the cell', fontsize = 22)
plt.tick_params(axis='both', which='major', labelsize = 18)
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
plt.tight_layout()
return(ls_mean)

48
code/order_eff.py Normal file
View File

@ -0,0 +1,48 @@
from read_chirp_data import *
from func_spike import *
import matplotlib.pyplot as plt
import numpy as np
from IPython import embed #Funktionen importieren
data_dir = "../data"
data_chirps = ("2018-11-09-ad-invivo-1", "2018-11-09-ae-invivo-1", "2018-11-09-ag-invivo-1", "2018-11-13-aa-invivo-1", "2018-11-13-ac-invivo-1", "2018-11-13-ad-invivo-1", "2018-11-13-ah-invivo-1", "2018-11-13-ai-invivo-1", "2018-11-13-aj-invivo-1", "2018-11-13-ak-invivo-1", "2018-11-13-al-invivo-1", "2018-11-14-aa-invivo-1", "2018-11-14-ac-invivo-1", "2018-11-14-ad-invivo-1", "2018-11-14-af-invivo-1", "2018-11-14-ag-invivo-1", "2018-11-14-ah-invivo-1", "2018-11-14-ai-invivo-1", "2018-11-14-ak-invivo-1", "2018-11-14-al-invivo-1", "2018-11-14-am-invivo-1", "2018-11-14-an-invivo-1", "2018-11-20-aa-invivo-1", "2018-11-20-ab-invivo-1", "2018-11-20-ac-invivo-1", "2018-11-20-ad-invivo-1", "2018-11-20-ae-invivo-1", "2018-11-20-af-invivo-1", "2018-11-20-ag-invivo-1", "2018-11-20-ah-invivo-1", "2018-11-20-ai-invivo-1")
inch_factor = 2.54
data_rate_dict = {}
for dataset in data_chirps:
data_rate_dict[dataset] = []
chirp_spikes = read_chirp_spikes(os.path.join(data_dir, dataset))
times = read_chirp_times(os.path.join(data_dir, dataset))
eod = read_chirp_eod(os.path.join(data_dir, dataset))
df_map = map_keys(chirp_spikes)
for i in df_map.keys():
freq = list(df_map[i])
k = freq[0]
phase = list(chirp_spikes[k].keys())[0]
spikes = chirp_spikes[k][phase]
rate = len(spikes)/ 1.2
data_rate_dict[dataset].append(rate)
fig, ax = plt.subplots(figsize=(20/inch_factor, 10/inch_factor))
for dataset in data_rate_dict:
plt.plot(data_rate_dict[dataset])
plt.title('Test for sequence effects', fontsize = 24)
plt.xlabel('Number of stimulus presentations', fontsize = 22)
plt.ylabel('Firing rates of cells', fontsize = 22)
plt.tick_params(axis='both', which='major', labelsize = 22)
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
fig.tight_layout()
plt.show()

View File

@ -14,6 +14,9 @@ dataset = '2018-11-14-ad-invivo-1'
# read eod and time of baseline
time, eod = read_baseline_eod(os.path.join(data_dir, dataset))
eod_norm = eod - np.mean(eod)
# calculate eod times and indices by zero crossings
@ -23,6 +26,10 @@ eod_times = time[(eod_norm >= threshold) & (shift_eod < threshold)]
eod_duration = eod_times[2]- eod_times[1] #time in s
eod_duration = eod_times[2]- eod_times[1]
# read spikes during baseline activity
spikes = read_baseline_spikes(os.path.join(data_dir, dataset)) #spikes in s
# calculate interpike intervals and plot them
@ -37,9 +44,8 @@ plt.yticks(fontsize = 18)
ax.spines["top"].set_visible(False)
ax.spines["right"].set_visible(False)
fig.tight_layout()
plt.show()
#plt.show()
#plt.savefig('isis.pdf')
exit()
plt.savefig('isis.png')
@ -93,10 +99,10 @@ plt.yticks(fontsize=18)
ax1.spines['top'].set_visible(False)
ax2 = ax1.twinx()
ax2.fill_between(time_axis, mu_eod+std_eod, mu_eod-std_eod, color='navy', alpha=0.5)
ax2.fill_between(time_axis, mu_eod+std_eod, mu_eod-std_eod, color='royalblue', alpha=0.5)
ax2.plot(time_axis, mu_eod, color='black', lw=2)
ax2.set_ylabel('voltage [mV]', fontsize=22)
ax2.tick_params(axis='y', labelcolor='navy')
ax2.tick_params(axis='y', labelcolor='royalblue')
ax2.spines['top'].set_visible(False)
plt.yticks(fontsize=18)

View File

@ -17,6 +17,7 @@ interspikeintervals = np.diff(spikes)*1000
fig, ax = plt.subplots(figsize=(20/inch_factor, 10/inch_factor))
plt.hist(interspikeintervals, bins=np.arange(0, np.max(interspikeintervals), 0.0001), color='darkblue')
#Titel fehlt!!
plt.xlabel("time [ms]", fontsize = 22)
plt.xticks(fontsize = 18)
plt.ylabel("Number of \n Interspikeinterval", fontsize = 22)

View File

@ -35,13 +35,13 @@ for k, t in enumerate(time):
p += f * stepsize
signal[k] = a * np.sin(6.28318530717959 * p)
fig = plt.figure(figsize = (20/inch_factor, 15/inch_factor))
fig = plt.figure(figsize = (20/inch_factor, 12/inch_factor))
ax1 = fig.add_subplot(211)
plt.yticks(fontsize=18)
ax2 = fig.add_subplot(212, sharex=ax1)
plt.setp(ax1.get_xticklabels(), visible=False)
ax1.plot(time*1000, signal, color = 'midnightblue', lw = 1)
ax2.plot(time*1000, freq, color = 'midnightblue', lw = 3)
ax1.plot(time*1000, signal, color = 'royalblue', lw = 1)
ax2.plot(time*1000, freq, color = 'royalblue', lw = 3)
ax1.set_ylabel("field [mV]", fontsize = 22)
@ -53,5 +53,5 @@ ax2.yaxis.set_label_coords(-0.1, 0.5)
plt.xticks(fontsize=18)
plt.yticks(fontsize=18)
fig.tight_layout()
#plt.show()
plt.savefig('stimulus_chirp.png')
plt.show()
#plt.savefig('stimulus_chirp.png')

View File

@ -1,25 +0,0 @@
from read_baseline_data import *
from utility import *
#import nix_helpers as nh
import matplotlib.pyplot as plt
import numpy as np
from IPython import embed #Funktionen importieren
#Zeitpunkte einer EOD über Zero-crossings finden, die in einer Steigung liegen
data_dir = "../data"
dataset = "2018-11-09-ad-invivo-1"
time,eod = read_baseline_eod(os.path.join(data_dir, dataset))
spike_times = read_baseline_spikes(os.path.join(data_dir, dataset))
print(len(spike_times))
eod_times = zero_crossing(eod,time)
eod_durations = np.diff(eod_times)
print(len(spike_times))
print(len(eod_durations))
#for st in spike_times:
#et = eod_times[eod_times < st]
#dt = st - et
#vs = vector_strength(spike_times, eod_durations)