separate plotting and analysis
This commit is contained in:
parent
511fddbeb2
commit
d0bde3b673
@ -45,11 +45,12 @@ Won't do, this is trivial?!
|
|||||||
* calculate the discriminability between the baseline (no-other fish present) and the another fish is present for each contrast
|
* calculate the discriminability between the baseline (no-other fish present) and the another fish is present for each contrast
|
||||||
* Work out the difference between the soliloquy and the response to self generated chirp in a communication context -> done
|
* Work out the difference between the soliloquy and the response to self generated chirp in a communication context -> done
|
||||||
* Compare to the beat alone parts of the responses. -> done
|
* Compare to the beat alone parts of the responses. -> done
|
||||||
* What kernels to use?
|
* What kernels to use? -> done
|
||||||
* Duration of the chrip window?
|
* Duration of the chrip window?
|
||||||
* sorting according to phase?
|
* sorting according to phase?
|
||||||
* we could filter the P-unit responses to model the ELL filering
|
* we could filter the P-unit responses to model the ELL filtering
|
||||||
|
|
||||||
|
### 4 plot discrimination results
|
||||||
## Random thoughts
|
## Random thoughts
|
||||||
|
|
||||||
* who is sending the chrips? Henninger and also Hupe illustrate the subordinant fish is chirping.
|
* who is sending the chrips? Henninger and also Hupe illustrate the subordinant fish is chirping.
|
||||||
|
98
nix_util.py
Normal file
98
nix_util.py
Normal file
@ -0,0 +1,98 @@
|
|||||||
|
import nixio as nix
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
def read_baseline(block):
|
||||||
|
spikes = []
|
||||||
|
if "baseline" not in block.name:
|
||||||
|
print("Block %s does not appear to be a baseline block!" % block.name )
|
||||||
|
return spikes
|
||||||
|
spikes = block.data_arrays[0][:]
|
||||||
|
return spikes
|
||||||
|
|
||||||
|
|
||||||
|
def sort_blocks(nix_file):
|
||||||
|
block_map = {}
|
||||||
|
contrasts = []
|
||||||
|
deltafs = []
|
||||||
|
conditions = []
|
||||||
|
for b in nix_file.blocks:
|
||||||
|
if "baseline" not in b.name.lower():
|
||||||
|
name_parts = b.name.split("_")
|
||||||
|
cntrst = float(name_parts[1])
|
||||||
|
if cntrst not in contrasts:
|
||||||
|
contrasts.append(cntrst)
|
||||||
|
cndtn = name_parts[3]
|
||||||
|
if cndtn not in conditions:
|
||||||
|
conditions.append(cndtn)
|
||||||
|
dltf = float(name_parts[5])
|
||||||
|
if dltf not in deltafs:
|
||||||
|
deltafs.append(dltf)
|
||||||
|
block_map[(cntrst, dltf, cndtn)] = b
|
||||||
|
else:
|
||||||
|
block_map["baseline"] = b
|
||||||
|
return block_map, contrasts, deltafs, conditions
|
||||||
|
|
||||||
|
|
||||||
|
def get_spikes(block):
|
||||||
|
"""Get the spike trains.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
block ([type]): [description]
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
list of np.ndarray: the spike trains.
|
||||||
|
"""
|
||||||
|
response_map = {}
|
||||||
|
spikes = []
|
||||||
|
|
||||||
|
for da in block.data_arrays:
|
||||||
|
if "spike_times" in da.type and "response" in da.name:
|
||||||
|
resp_id = int(da.name.split("_")[-1])
|
||||||
|
response_map[resp_id] = da
|
||||||
|
for k in sorted(response_map.keys()):
|
||||||
|
spikes.append(response_map[k][:])
|
||||||
|
|
||||||
|
return spikes
|
||||||
|
|
||||||
|
|
||||||
|
def get_signals(block):
|
||||||
|
"""Read the fish signals from block.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
block ([type]): the block containing the data for a given df, contrast and condition
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: when the complete stimulus data is not found
|
||||||
|
ValueError: when the no-other animal data is not found
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
np.ndarray: the complete signal
|
||||||
|
np.ndarray: the frequency profile of the recorded fish
|
||||||
|
np.ndarray: the frequency profile of the other fish
|
||||||
|
np.ndarray: the time axis
|
||||||
|
"""
|
||||||
|
self_freq = None
|
||||||
|
other_freq = None
|
||||||
|
signal = None
|
||||||
|
time = None
|
||||||
|
if "complete stimulus" not in block.data_arrays or "self frequency" not in block.data_arrays:
|
||||||
|
raise ValueError("Signals not stored in block!")
|
||||||
|
if "no-other" not in block.name and "other frequency" not in block.data_arrays:
|
||||||
|
raise ValueError("Signals not stored in block!")
|
||||||
|
|
||||||
|
signal = block.data_arrays["complete stimulus"][:]
|
||||||
|
time = np.asarray(block.data_arrays["complete stimulus"].dimensions[0].axis(len(signal)))
|
||||||
|
self_freq = block.data_arrays["self frequency"][:]
|
||||||
|
if "no-other" not in block.name:
|
||||||
|
other_freq = block.data_arrays["other frequency"][:]
|
||||||
|
return signal, self_freq, other_freq, time
|
||||||
|
|
||||||
|
|
||||||
|
def get_chirp_metadata(block):
|
||||||
|
trial_duration = float(block.metadata["stimulus parameter"]["duration"])
|
||||||
|
dt = float(block.metadata["stimulus parameter"]["dt"])
|
||||||
|
chirp_duration = block.metadata["stimulus parameter"]["chirp_duration"]
|
||||||
|
chirp_size = block.metadata["stimulus parameter"]["chirp_size"]
|
||||||
|
chirp_times = block.metadata["stimulus parameter"]["chirp_times"]
|
||||||
|
|
||||||
|
return trial_duration, dt, chirp_size, chirp_duration, chirp_times
|
224
plots.py
Normal file
224
plots.py
Normal file
@ -0,0 +1,224 @@
|
|||||||
|
import glob
|
||||||
|
import os
|
||||||
|
import nixio as nix
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from matplotlib.patches import Rectangle
|
||||||
|
from matplotlib.collections import PatchCollection
|
||||||
|
from matplotlib.patches import ConnectionPatch
|
||||||
|
|
||||||
|
from nix_util import sort_blocks, read_baseline, get_signals
|
||||||
|
from util import despine
|
||||||
|
|
||||||
|
figure_folder = "figures"
|
||||||
|
data_folder = "data"
|
||||||
|
|
||||||
|
|
||||||
|
def plot_comparisons(current_df=20):
|
||||||
|
files = sorted(glob.glob(os.path.join(data_folder, "*.nix")))
|
||||||
|
if len(files) < 1:
|
||||||
|
print("plot comparisons: no data found!")
|
||||||
|
return
|
||||||
|
filename = files[0]
|
||||||
|
nf = nix.File.open(filename, nix.FileMode.ReadOnly)
|
||||||
|
block_map, all_contrasts, _, all_conditions = sort_blocks(nf)
|
||||||
|
conditions = ["no-other", "self", "other"]
|
||||||
|
min_time = 0.5
|
||||||
|
max_time = min_time + 0.5
|
||||||
|
|
||||||
|
fig = plt.figure(figsize=(6.5, 2.))
|
||||||
|
fig_grid = (3, len(all_conditions)*3+2)
|
||||||
|
axes = []
|
||||||
|
for i, condition in enumerate(conditions):
|
||||||
|
# plot the signals
|
||||||
|
block = block_map[(all_contrasts[0], current_df, condition)]
|
||||||
|
_, self_freq, other_freq, time = get_signals(block)
|
||||||
|
|
||||||
|
self_eodf = block.metadata["stimulus parameter"]["eodfs"]["self"]
|
||||||
|
other_eodf = block.metadata["stimulus parameter"]["eodfs"]["other"]
|
||||||
|
|
||||||
|
# plot frequency traces
|
||||||
|
ax = plt.subplot2grid(fig_grid, (0, i * 3 + i), rowspan=2, colspan=3, fig=fig)
|
||||||
|
ax.plot(time[(time > min_time) & (time < max_time)], self_freq[(time > min_time) & (time < max_time)],
|
||||||
|
color="#ff7f0e", label="%iHz" % self_eodf)
|
||||||
|
ax.text(min_time-0.05, self_eodf, "%iHz" % self_eodf, color="#ff7f0e", va="center", ha="right", fontsize=9)
|
||||||
|
if other_freq is not None:
|
||||||
|
ax.plot(time[(time > min_time) & (time < max_time)], other_freq[(time > min_time) & (time < max_time)],
|
||||||
|
color="#1f77b4", label="%iHz" % other_eodf)
|
||||||
|
ax.text(min_time-0.05, other_eodf, "%iHz" % other_eodf, color="#1f77b4", va="center", ha="right", fontsize=9)
|
||||||
|
# ax.set_title(condition_labels[i])
|
||||||
|
ax.set_ylim([735, 885])
|
||||||
|
despine(ax, ["top", "bottom", "left", "right"], True)
|
||||||
|
axes.append(ax)
|
||||||
|
|
||||||
|
rects = []
|
||||||
|
rect = Rectangle((0.675, 740), 0.098, 140)
|
||||||
|
rects.append(rect)
|
||||||
|
rect = Rectangle((0.57, 740), 0.098, 140)
|
||||||
|
rects.append(rect)
|
||||||
|
|
||||||
|
pc = PatchCollection(rects, facecolor=None, alpha=0.15, edgecolor="k", ls="--")
|
||||||
|
axes[0].add_collection(pc)
|
||||||
|
|
||||||
|
rects = []
|
||||||
|
rect = Rectangle((0.675, 740), 0.098, 140)
|
||||||
|
rects.append(rect)
|
||||||
|
rect = Rectangle((0.575, 740), 0.098, 140)
|
||||||
|
rects.append(rect)
|
||||||
|
|
||||||
|
pc = PatchCollection(rects, facecolor=None, alpha=0.15, edgecolor="k", ls="--")
|
||||||
|
axes[1].add_collection(pc)
|
||||||
|
|
||||||
|
rects = []
|
||||||
|
rect = Rectangle((0.57, 740), 0.098, 140)
|
||||||
|
rects.append(rect)
|
||||||
|
pc = PatchCollection(rects, facecolor=None, alpha=0.15, edgecolor="k", ls="--")
|
||||||
|
axes[2].add_collection(pc)
|
||||||
|
|
||||||
|
con = ConnectionPatch(xyA=(0.625, 735), xyB=(0.625, 740), coordsA="data", coordsB="data",
|
||||||
|
axesA=axes[0], axesB=axes[1], arrowstyle="<->", shrinkB=5, connectionstyle="arc3,rad=.35")
|
||||||
|
axes[1].add_artist(con)
|
||||||
|
con = ConnectionPatch(xyA=(0.725, 885), xyB=(0.725, 880), coordsA="data", coordsB="data",
|
||||||
|
axesA=axes[0], axesB=axes[1], arrowstyle="<->", shrinkB=5, connectionstyle="arc3,rad=-.25")
|
||||||
|
axes[1].add_artist(con)
|
||||||
|
con = ConnectionPatch(xyA=(0.725, 735), xyB=(0.625, 740), coordsA="data", coordsB="data",
|
||||||
|
axesA=axes[1], axesB=axes[2], arrowstyle="<->", shrinkB=5, connectionstyle="arc3,rad=.35")
|
||||||
|
axes[1].add_artist(con)
|
||||||
|
|
||||||
|
axes[0].text(1., 660, "2.")
|
||||||
|
axes[1].text(1.05, 660, "3.")
|
||||||
|
axes[0].text(1.1, 890, "1.")
|
||||||
|
fig.subplots_adjust(bottom=0.1, top=0.8, left=0.1, right=0.9)
|
||||||
|
fig.savefig(os.path.join(figure_folder, "comparisons.pdf"))
|
||||||
|
plt.close()
|
||||||
|
nf.close()
|
||||||
|
|
||||||
|
|
||||||
|
def create_response_plot(filename, current_df=20, figure_name=None):
|
||||||
|
files = sorted(glob.glob(os.path.join(data_folder, "*.nix")))
|
||||||
|
if len(files) < 1:
|
||||||
|
print("plot comparisons: no data found!")
|
||||||
|
return
|
||||||
|
filename = files[0]
|
||||||
|
nf = nix.File.open(filename, nix.FileMode.ReadOnly)
|
||||||
|
block_map, all_contrasts, _, all_conditions = sort_blocks(nf)
|
||||||
|
|
||||||
|
conditions = ["no-other", "self", "other"]
|
||||||
|
condition_labels = ["soliloquy", "self chirping", "other chirping"]
|
||||||
|
min_time = 0.5
|
||||||
|
max_time = min_time + 0.5
|
||||||
|
|
||||||
|
fig = plt.figure(figsize=(6.5, 5.5))
|
||||||
|
fig_grid = (len(all_contrasts)*2 + 6, len(all_conditions)*3+2)
|
||||||
|
all_contrasts = sorted(all_contrasts, reverse=True)
|
||||||
|
|
||||||
|
for i, condition in enumerate(conditions):
|
||||||
|
# plot the signals
|
||||||
|
block = block_map[(all_contrasts[0], current_df, condition)]
|
||||||
|
signal, self_freq, other_freq, time = get_signals(block)
|
||||||
|
am = extract_am(signal)
|
||||||
|
|
||||||
|
self_eodf = block.metadata["stimulus parameter"]["eodfs"]["self"]
|
||||||
|
other_eodf = block.metadata["stimulus parameter"]["eodfs"]["other"]
|
||||||
|
|
||||||
|
# plot frequency traces
|
||||||
|
ax = plt.subplot2grid(fig_grid, (0, i * 3 + i), rowspan=2, colspan=3, fig=fig)
|
||||||
|
ax.plot(time[(time > min_time) & (time < max_time)], self_freq[(time > min_time) & (time < max_time)],
|
||||||
|
color="#ff7f0e", label="%iHz" % self_eodf)
|
||||||
|
ax.text(min_time-0.05, self_eodf, "%iHz" % self_eodf, color="#ff7f0e", va="center", ha="right", fontsize=9)
|
||||||
|
if other_freq is not None:
|
||||||
|
ax.plot(time[(time > min_time) & (time < max_time)], other_freq[(time > min_time) & (time < max_time)],
|
||||||
|
color="#1f77b4", label="%iHz" % other_eodf)
|
||||||
|
ax.text(min_time-0.05, other_eodf, "%iHz" % other_eodf, color="#1f77b4", va="center", ha="right", fontsize=9)
|
||||||
|
ax.set_title(condition_labels[i])
|
||||||
|
despine(ax, ["top", "bottom", "left", "right"], True)
|
||||||
|
|
||||||
|
# plot the am
|
||||||
|
ax = plt.subplot2grid(fig_grid, (3, i * 3 + i), rowspan=2, colspan=3, fig=fig)
|
||||||
|
ax.plot(time[(time > min_time) & (time < max_time)], signal[(time > min_time) & (time < max_time)],
|
||||||
|
color="#2ca02c", label="signal")
|
||||||
|
ax.plot(time[(time > min_time) & (time < max_time)], am[(time > min_time) & (time < max_time)],
|
||||||
|
color="#d62728", label="am")
|
||||||
|
despine(ax, ["top", "bottom", "left", "right"], True)
|
||||||
|
ax.set_ylim([-1.25, 1.25])
|
||||||
|
ax.legend(ncol=2, loc=(0.01, -0.5), fontsize=7, markerscale=0.5, frameon=False)
|
||||||
|
|
||||||
|
# for each contrast plot the firing rate
|
||||||
|
for j, contrast in enumerate(all_contrasts):
|
||||||
|
t, rates, _ = get_firing_rate(block_map, current_df, contrast, condition)
|
||||||
|
avg_resp = np.mean(rates, axis=0)
|
||||||
|
error = np.std(rates, axis=0)
|
||||||
|
ax = plt.subplot2grid(fig_grid, (j*2 + 6, i * 3 + i), rowspan=2, colspan=3)
|
||||||
|
ax.plot(t[(t > min_time) & (t < max_time)], avg_resp[(t > min_time) & (t < max_time)], color="k", lw=0.5)
|
||||||
|
ax.fill_between(t[(t > min_time) & (t < max_time)], (avg_resp - error)[(t > min_time) & (t < max_time)],
|
||||||
|
(avg_resp + error)[(t > min_time) & (t < max_time)], color="k", lw=0.0, alpha=0.25)
|
||||||
|
ax.set_ylim([0, 750])
|
||||||
|
ax.set_xlabel("")
|
||||||
|
ax.set_ylabel("")
|
||||||
|
ax.set_xticks(np.arange(min_time, max_time+.01, 0.250))
|
||||||
|
ax.set_xticklabels(map(int, (np.arange(min_time, max_time + .01, 0.250) - min_time) * 1000))
|
||||||
|
ax.set_xticks(np.arange(min_time, max_time+.01, 0.125), minor=True)
|
||||||
|
if j < len(all_contrasts) -1:
|
||||||
|
ax.set_xticklabels([])
|
||||||
|
ax.set_yticks(np.arange(0.0, 751., 500))
|
||||||
|
ax.set_yticks(np.arange(0.0, 751., 125), minor=True)
|
||||||
|
if i > 0:
|
||||||
|
ax.set_yticklabels([])
|
||||||
|
despine(ax, ["top", "right"], False)
|
||||||
|
if i == 2:
|
||||||
|
ax.text(max_time + 0.025*max_time, 350, "c=%.3f" % all_contrasts[j],
|
||||||
|
color="#d62728", ha="left", fontsize=7)
|
||||||
|
|
||||||
|
if i == 1:
|
||||||
|
ax.set_xlabel("time [ms]")
|
||||||
|
if i == 0:
|
||||||
|
ax.set_ylabel("frequency [Hz]", va="center")
|
||||||
|
ax.yaxis.set_label_coords(-0.45, 3.5)
|
||||||
|
|
||||||
|
name = figure_name if figure_name is not None else "chirp_responses.pdf"
|
||||||
|
name = (name + ".pdf") if ".pdf" not in name else name
|
||||||
|
plt.savefig(os.path.join(figure_folder, name))
|
||||||
|
plt.close()
|
||||||
|
nf.close()
|
||||||
|
|
||||||
|
def response_examples(*kwargs):
|
||||||
|
|
||||||
|
if filename in kwargs:
|
||||||
|
|
||||||
|
#fig_name = filename.split(os.path.sep)[-1].split(".nix")[0] + "_df_20Hz.pdf"
|
||||||
|
#create_response_plot(block_map, all_dfs, all_contrasts, all_conditions, 20, figure_name=fig_name)
|
||||||
|
#fig_name = filename.split(os.path.sep)[-1].split(".nix")[0] + "_df_-100Hz.pdf"
|
||||||
|
#create_response_plot(block_map, all_dfs, all_contrasts, all_conditions, -100, figure_name=fig_name)
|
||||||
|
|
||||||
|
def main(task=None, parameter={}):
|
||||||
|
plot_tasks = {"comparisons": plot_comparisons,
|
||||||
|
"response_examples": create_response_plot}
|
||||||
|
if task is not None and task in plot_tasks.keys():
|
||||||
|
plot_tasks[task](*parameter)
|
||||||
|
elif task is None:
|
||||||
|
for t in plot_tasks.keys():
|
||||||
|
plot_tasks[t](*parameter)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main("comparisons")
|
||||||
|
|
||||||
|
|
||||||
|
def plot_examples(filename, dfs=[], contrasts=[], conditions=[]):
|
||||||
|
# plot the responses
|
||||||
|
#fig_name = filename.split(os.path.sep)[-1].split(".nix")[0] + "_df_20Hz.pdf"
|
||||||
|
#create_response_plot(block_map, all_dfs, all_contrasts, all_conditions, 20, figure_name=fig_name)
|
||||||
|
#fig_name = filename.split(os.path.sep)[-1].split(".nix")[0] + "_df_-100Hz.pdf"
|
||||||
|
#create_response_plot(block_map, all_dfs, all_contrasts, all_conditions, -100, figure_name=fig_name)
|
||||||
|
|
||||||
|
# sketch showing the comparisons
|
||||||
|
#plot_comparisons(block_map, all_dfs, all_contrasts, all_conditions, 20)
|
||||||
|
|
||||||
|
# plot the discrimination analyses
|
||||||
|
#cell_name = filename.split(os.path.sep)[-1].split(".nix")[0]
|
||||||
|
# results = foreign_fish_detection(block_map, all_dfs, all_contrasts, all_conditions, current_df=20,
|
||||||
|
# cell_name=cell_name, store_roc=True)
|
||||||
|
# pdf = pd.DataFrame(results)
|
||||||
|
# plot_detection_results(pdf, 20, 0.001, cell_name)
|
||||||
|
|
||||||
|
#nf.close()
|
||||||
|
pass
|
@ -7,6 +7,8 @@ from chirp_ams import get_signals
|
|||||||
from model import simulate, load_models
|
from model import simulate, load_models
|
||||||
from IPython import embed
|
from IPython import embed
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
import multiprocessing
|
||||||
|
from joblib import Parallel, delayed
|
||||||
|
|
||||||
data_folder = "data"
|
data_folder = "data"
|
||||||
|
|
||||||
@ -181,8 +183,7 @@ def simulate_responses(stimulus_params, model_params, repeats=10, deltaf=20):
|
|||||||
print("\n")
|
print("\n")
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def simulate_cell(cell_id, models):
|
||||||
models = load_models("models.csv")
|
|
||||||
deltafs = [-200, -100, -50, -20, -10, -5, 5, 10, 20, 50, 100, 200] # Hz, difference frequency between self and other
|
deltafs = [-200, -100, -50, -20, -10, -5, 5, 10, 20, 50, 100, 200] # Hz, difference frequency between self and other
|
||||||
stimulus_params = { "eodfs": {"self": 0.0, "other": 0.0}, # eod frequency in Hz, to be overwritten
|
stimulus_params = { "eodfs": {"self": 0.0, "other": 0.0}, # eod frequency in Hz, to be overwritten
|
||||||
"contrasts": [20, 10, 5, 2.5, 1.25, 0.625, 0.3125],
|
"contrasts": [20, 10, 5, 2.5, 1.25, 0.625, 0.3125],
|
||||||
@ -192,26 +193,30 @@ def main():
|
|||||||
"chirp_frequency": 5, # Hz, how often does the fish chirp
|
"chirp_frequency": 5, # Hz, how often does the fish chirp
|
||||||
"duration": 5., # s, total duration of simulation
|
"duration": 5., # s, total duration of simulation
|
||||||
"dt": 1, # s, stepsize of the simulation, to be overwritten
|
"dt": 1, # s, stepsize of the simulation, to be overwritten
|
||||||
}
|
}
|
||||||
|
model_params = models[cell_id]
|
||||||
for cell_id in range(len(models)):
|
baseline_spikes = get_baseline_response(model_params, duration=30)
|
||||||
model_params = models[cell_id]
|
filename = os.path.join(data_folder, "cell_%s.nix" % model_params["cell"])
|
||||||
baseline_spikes = get_baseline_response(model_params, duration=30)
|
save_baseline_response(filename, "baseline response", baseline_spikes, model_params)
|
||||||
save_baseline_response( "cell_%s.nix" % model_params["cell"], "baseline response", baseline_spikes, model_params)
|
|
||||||
|
print("Cell: %s" % model_params["cell"])
|
||||||
print("Cell: %s" % model_params["cell"])
|
for deltaf in deltafs:
|
||||||
for deltaf in deltafs:
|
stimulus_params["eodfs"] = {"self": model_params["EODf"], "other": model_params["EODf"] + deltaf}
|
||||||
stimulus_params["eodfs"] = {"self": model_params["EODf"], "other": model_params["EODf"] + deltaf}
|
stimulus_params["dt"] = model_params["deltat"]
|
||||||
stimulus_params["dt"] = model_params["deltat"]
|
|
||||||
|
print("\t Deltaf: %i" % deltaf)
|
||||||
print("\t Deltaf: %i" % deltaf)
|
chirp_times = np.arange(stimulus_params["chirp_duration"],
|
||||||
chirp_times = np.arange(stimulus_params["chirp_duration"],
|
stimulus_params["duration"] - stimulus_params["chirp_duration"],
|
||||||
stimulus_params["duration"] - stimulus_params["chirp_duration"],
|
1./stimulus_params["chirp_frequency"])
|
||||||
1./stimulus_params["chirp_frequency"])
|
stimulus_params["chirp_times"] = chirp_times
|
||||||
stimulus_params["chirp_times"] = chirp_times
|
simulate_responses(stimulus_params, model_params, repeats=25, deltaf=deltaf)
|
||||||
simulate_responses(stimulus_params, model_params, repeats=25, deltaf=deltaf)
|
|
||||||
if cell_id == 9:
|
|
||||||
exit() # the first 10 cell only for now!
|
def main():
|
||||||
|
models = load_models("models.csv")
|
||||||
|
num_cores = multiprocessing.cpu_count() - 6
|
||||||
|
|
||||||
|
Parallel(n_jobs=num_cores)(delayed(simulate_cell)(cell_id, models) for cell_id in range(len(models[:10])))
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
@ -4,71 +4,17 @@ import pandas as pd
|
|||||||
import nixio as nix
|
import nixio as nix
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from matplotlib.patches import Rectangle
|
|
||||||
from matplotlib.collections import PatchCollection
|
|
||||||
from matplotlib.patches import ConnectionPatch
|
|
||||||
from sklearn.metrics import roc_curve, roc_auc_score
|
from sklearn.metrics import roc_curve, roc_auc_score
|
||||||
from IPython import embed
|
from IPython import embed
|
||||||
|
import multiprocessing
|
||||||
|
from joblib import Parallel, delayed
|
||||||
|
|
||||||
from util import firing_rate, despine, extract_am, within_group_distance, across_group_distance
|
from util import firing_rate, despine, extract_am, within_group_distance, across_group_distance
|
||||||
|
from nix_util import read_baseline, sort_blocks, get_spikes, get_signals, get_chirp_metadata
|
||||||
|
|
||||||
figure_folder = "figures"
|
figure_folder = "figures"
|
||||||
data_folder = "data"
|
data_folder = "data"
|
||||||
|
|
||||||
|
|
||||||
def read_baseline(block):
|
|
||||||
spikes = []
|
|
||||||
if "baseline" not in block.name:
|
|
||||||
print("Block %s does not appear to be a baseline block!" % block.name )
|
|
||||||
return spikes
|
|
||||||
spikes = block.data_arrays[0][:]
|
|
||||||
return spikes
|
|
||||||
|
|
||||||
|
|
||||||
def sort_blocks(nix_file):
|
|
||||||
block_map = {}
|
|
||||||
contrasts = []
|
|
||||||
deltafs = []
|
|
||||||
conditions = []
|
|
||||||
for b in nix_file.blocks:
|
|
||||||
if "baseline" not in b.name.lower():
|
|
||||||
name_parts = b.name.split("_")
|
|
||||||
cntrst = float(name_parts[1])
|
|
||||||
if cntrst not in contrasts:
|
|
||||||
contrasts.append(cntrst)
|
|
||||||
cndtn = name_parts[3]
|
|
||||||
if cndtn not in conditions:
|
|
||||||
conditions.append(cndtn)
|
|
||||||
dltf = float(name_parts[5])
|
|
||||||
if dltf not in deltafs:
|
|
||||||
deltafs.append(dltf)
|
|
||||||
block_map[(cntrst, dltf, cndtn)] = b
|
|
||||||
else:
|
|
||||||
block_map["baseline"] = b
|
|
||||||
return block_map, contrasts, deltafs, conditions
|
|
||||||
|
|
||||||
|
|
||||||
def get_spikes(block):
|
|
||||||
"""Get the spike trains.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
block ([type]): [description]
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
list of np.ndarray: the spike trains.
|
|
||||||
"""
|
|
||||||
response_map = {}
|
|
||||||
spikes = []
|
|
||||||
|
|
||||||
for da in block.data_arrays:
|
|
||||||
if "spike_times" in da.type and "response" in da.name:
|
|
||||||
resp_id = int(da.name.split("_")[-1])
|
|
||||||
response_map[resp_id] = da
|
|
||||||
for k in sorted(response_map.keys()):
|
|
||||||
spikes.append(response_map[k][:])
|
|
||||||
|
|
||||||
return spikes
|
|
||||||
|
|
||||||
|
|
||||||
def get_rates(spike_trains, duration, dt, kernel_width):
|
def get_rates(spike_trains, duration, dt, kernel_width):
|
||||||
"""Convert the spike trains (list of spike_times) to rates using a Gaussian kernel of the given size.
|
"""Convert the spike trains (list of spike_times) to rates using a Gaussian kernel of the given size.
|
||||||
|
|
||||||
@ -114,126 +60,7 @@ def get_firing_rate(block_map, df, contrast, condition, kernel_width=0.0005):
|
|||||||
return time, rates, spikes
|
return time, rates, spikes
|
||||||
|
|
||||||
|
|
||||||
def get_signals(block):
|
|
||||||
"""Read the fish signals from block.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
block ([type]): the block containing the data for a given df, contrast and condition
|
|
||||||
|
|
||||||
Raises:
|
|
||||||
ValueError: when the complete stimulus data is not found
|
|
||||||
ValueError: when the no-other animal data is not found
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
np.ndarray: the complete signal
|
|
||||||
np.ndarray: the frequency profile of the recorded fish
|
|
||||||
np.ndarray: the frequency profile of the other fish
|
|
||||||
np.ndarray: the time axis
|
|
||||||
"""
|
|
||||||
self_freq = None
|
|
||||||
other_freq = None
|
|
||||||
signal = None
|
|
||||||
time = None
|
|
||||||
if "complete stimulus" not in block.data_arrays or "self frequency" not in block.data_arrays:
|
|
||||||
raise ValueError("Signals not stored in block!")
|
|
||||||
if "no-other" not in block.name and "other frequency" not in block.data_arrays:
|
|
||||||
raise ValueError("Signals not stored in block!")
|
|
||||||
|
|
||||||
signal = block.data_arrays["complete stimulus"][:]
|
|
||||||
time = np.asarray(block.data_arrays["complete stimulus"].dimensions[0].axis(len(signal)))
|
|
||||||
self_freq = block.data_arrays["self frequency"][:]
|
|
||||||
if "no-other" not in block.name:
|
|
||||||
other_freq = block.data_arrays["other frequency"][:]
|
|
||||||
return signal, self_freq, other_freq, time
|
|
||||||
|
|
||||||
|
|
||||||
def create_response_plot(block_map, all_dfs, all_contrasts, all_conditions, current_df, figure_name=None):
|
|
||||||
conditions = ["no-other", "self", "other"]
|
|
||||||
condition_labels = ["soliloquy", "self chirping", "other chirping"]
|
|
||||||
min_time = 0.5
|
|
||||||
max_time = min_time + 0.5
|
|
||||||
|
|
||||||
fig = plt.figure(figsize=(6.5, 5.5))
|
|
||||||
fig_grid = (len(all_contrasts)*2 + 6, len(all_conditions)*3+2)
|
|
||||||
all_contrasts = sorted(all_contrasts, reverse=True)
|
|
||||||
|
|
||||||
for i, condition in enumerate(conditions):
|
|
||||||
# plot the signals
|
|
||||||
block = block_map[(all_contrasts[0], current_df, condition)]
|
|
||||||
signal, self_freq, other_freq, time = get_signals(block)
|
|
||||||
am = extract_am(signal)
|
|
||||||
|
|
||||||
self_eodf = block.metadata["stimulus parameter"]["eodfs"]["self"]
|
|
||||||
other_eodf = block.metadata["stimulus parameter"]["eodfs"]["other"]
|
|
||||||
|
|
||||||
# plot frequency traces
|
|
||||||
ax = plt.subplot2grid(fig_grid, (0, i * 3 + i), rowspan=2, colspan=3, fig=fig)
|
|
||||||
ax.plot(time[(time > min_time) & (time < max_time)], self_freq[(time > min_time) & (time < max_time)],
|
|
||||||
color="#ff7f0e", label="%iHz" % self_eodf)
|
|
||||||
ax.text(min_time-0.05, self_eodf, "%iHz" % self_eodf, color="#ff7f0e", va="center", ha="right", fontsize=9)
|
|
||||||
if other_freq is not None:
|
|
||||||
ax.plot(time[(time > min_time) & (time < max_time)], other_freq[(time > min_time) & (time < max_time)],
|
|
||||||
color="#1f77b4", label="%iHz" % other_eodf)
|
|
||||||
ax.text(min_time-0.05, other_eodf, "%iHz" % other_eodf, color="#1f77b4", va="center", ha="right", fontsize=9)
|
|
||||||
ax.set_title(condition_labels[i])
|
|
||||||
despine(ax, ["top", "bottom", "left", "right"], True)
|
|
||||||
|
|
||||||
# plot the am
|
|
||||||
ax = plt.subplot2grid(fig_grid, (3, i * 3 + i), rowspan=2, colspan=3, fig=fig)
|
|
||||||
ax.plot(time[(time > min_time) & (time < max_time)], signal[(time > min_time) & (time < max_time)],
|
|
||||||
color="#2ca02c", label="signal")
|
|
||||||
ax.plot(time[(time > min_time) & (time < max_time)], am[(time > min_time) & (time < max_time)],
|
|
||||||
color="#d62728", label="am")
|
|
||||||
despine(ax, ["top", "bottom", "left", "right"], True)
|
|
||||||
ax.set_ylim([-1.25, 1.25])
|
|
||||||
ax.legend(ncol=2, loc=(0.01, -0.5), fontsize=7, markerscale=0.5, frameon=False)
|
|
||||||
|
|
||||||
# for each contrast plot the firing rate
|
|
||||||
for j, contrast in enumerate(all_contrasts):
|
|
||||||
t, rates, _ = get_firing_rate(block_map, current_df, contrast, condition)
|
|
||||||
avg_resp = np.mean(rates, axis=0)
|
|
||||||
error = np.std(rates, axis=0)
|
|
||||||
ax = plt.subplot2grid(fig_grid, (j*2 + 6, i * 3 + i), rowspan=2, colspan=3)
|
|
||||||
ax.plot(t[(t > min_time) & (t < max_time)], avg_resp[(t > min_time) & (t < max_time)], color="k", lw=0.5)
|
|
||||||
ax.fill_between(t[(t > min_time) & (t < max_time)], (avg_resp - error)[(t > min_time) & (t < max_time)],
|
|
||||||
(avg_resp + error)[(t > min_time) & (t < max_time)], color="k", lw=0.0, alpha=0.25)
|
|
||||||
ax.set_ylim([0, 750])
|
|
||||||
ax.set_xlabel("")
|
|
||||||
ax.set_ylabel("")
|
|
||||||
ax.set_xticks(np.arange(min_time, max_time+.01, 0.250))
|
|
||||||
ax.set_xticklabels(map(int, (np.arange(min_time, max_time + .01, 0.250) - min_time) * 1000))
|
|
||||||
ax.set_xticks(np.arange(min_time, max_time+.01, 0.125), minor=True)
|
|
||||||
if j < len(all_contrasts) -1:
|
|
||||||
ax.set_xticklabels([])
|
|
||||||
ax.set_yticks(np.arange(0.0, 751., 500))
|
|
||||||
ax.set_yticks(np.arange(0.0, 751., 125), minor=True)
|
|
||||||
if i > 0:
|
|
||||||
ax.set_yticklabels([])
|
|
||||||
despine(ax, ["top", "right"], False)
|
|
||||||
if i == 2:
|
|
||||||
ax.text(max_time + 0.025*max_time, 350, "c=%.3f" % all_contrasts[j],
|
|
||||||
color="#d62728", ha="left", fontsize=7)
|
|
||||||
|
|
||||||
if i == 1:
|
|
||||||
ax.set_xlabel("time [ms]")
|
|
||||||
if i == 0:
|
|
||||||
ax.set_ylabel("frequency [Hz]", va="center")
|
|
||||||
ax.yaxis.set_label_coords(-0.45, 3.5)
|
|
||||||
|
|
||||||
name = figure_name if figure_name is not None else "chirp_responses.pdf"
|
|
||||||
name = (name + ".pdf") if ".pdf" not in name else name
|
|
||||||
plt.savefig(os.path.join(figure_folder, name))
|
|
||||||
plt.close()
|
|
||||||
|
|
||||||
|
|
||||||
def get_chirp_metadata(block):
|
|
||||||
trial_duration = float(block.metadata["stimulus parameter"]["duration"])
|
|
||||||
dt = float(block.metadata["stimulus parameter"]["dt"])
|
|
||||||
chirp_duration = block.metadata["stimulus parameter"]["chirp_duration"]
|
|
||||||
chirp_size = block.metadata["stimulus parameter"]["chirp_size"]
|
|
||||||
chirp_times = block.metadata["stimulus parameter"]["chirp_times"]
|
|
||||||
|
|
||||||
return trial_duration, dt, chirp_size, chirp_duration, chirp_times
|
|
||||||
|
|
||||||
|
|
||||||
def foreign_fish_detection_beat(block_map, df, all_contrasts, all_conditions, kernel_width=0.0005, cell_name="", store_roc=False):
|
def foreign_fish_detection_beat(block_map, df, all_contrasts, all_conditions, kernel_width=0.0005, cell_name="", store_roc=False):
|
||||||
@ -436,79 +263,6 @@ def plot_detection_results(data_frame, df, kernel_width, cell, figure_name=None)
|
|||||||
fig.savefig(os.path.join(figure_folder, name))
|
fig.savefig(os.path.join(figure_folder, name))
|
||||||
|
|
||||||
|
|
||||||
def plot_comparisons(block_map, all_dfs, all_contrasts, all_conditions, current_df):
|
|
||||||
conditions = ["no-other", "self", "other"]
|
|
||||||
condition_labels = ["soliloquy", "self chirping", "other chirping"]
|
|
||||||
min_time = 0.5
|
|
||||||
max_time = min_time + 0.5
|
|
||||||
|
|
||||||
fig = plt.figure(figsize=(6.5, 2.))
|
|
||||||
fig_grid = (3, len(all_conditions)*3+2)
|
|
||||||
axes = []
|
|
||||||
for i, condition in enumerate(conditions):
|
|
||||||
# plot the signals
|
|
||||||
block = block_map[(all_contrasts[0], current_df, condition)]
|
|
||||||
signal, self_freq, other_freq, time = get_signals(block)
|
|
||||||
|
|
||||||
self_eodf = block.metadata["stimulus parameter"]["eodfs"]["self"]
|
|
||||||
other_eodf = block.metadata["stimulus parameter"]["eodfs"]["other"]
|
|
||||||
|
|
||||||
# plot frequency traces
|
|
||||||
ax = plt.subplot2grid(fig_grid, (0, i * 3 + i), rowspan=2, colspan=3, fig=fig)
|
|
||||||
ax.plot(time[(time > min_time) & (time < max_time)], self_freq[(time > min_time) & (time < max_time)],
|
|
||||||
color="#ff7f0e", label="%iHz" % self_eodf)
|
|
||||||
ax.text(min_time-0.05, self_eodf, "%iHz" % self_eodf, color="#ff7f0e", va="center", ha="right", fontsize=9)
|
|
||||||
if other_freq is not None:
|
|
||||||
ax.plot(time[(time > min_time) & (time < max_time)], other_freq[(time > min_time) & (time < max_time)],
|
|
||||||
color="#1f77b4", label="%iHz" % other_eodf)
|
|
||||||
ax.text(min_time-0.05, other_eodf, "%iHz" % other_eodf, color="#1f77b4", va="center", ha="right", fontsize=9)
|
|
||||||
# ax.set_title(condition_labels[i])
|
|
||||||
ax.set_ylim([735, 885])
|
|
||||||
despine(ax, ["top", "bottom", "left", "right"], True)
|
|
||||||
axes.append(ax)
|
|
||||||
|
|
||||||
rects = []
|
|
||||||
rect = Rectangle((0.675, 740), 0.098, 140)
|
|
||||||
rects.append(rect)
|
|
||||||
rect = Rectangle((0.57, 740), 0.098, 140)
|
|
||||||
rects.append(rect)
|
|
||||||
|
|
||||||
pc = PatchCollection(rects, facecolor=None, alpha=0.15, edgecolor="k", ls="--")
|
|
||||||
axes[0].add_collection(pc)
|
|
||||||
|
|
||||||
rects = []
|
|
||||||
rect = Rectangle((0.675, 740), 0.098, 140)
|
|
||||||
rects.append(rect)
|
|
||||||
rect = Rectangle((0.575, 740), 0.098, 140)
|
|
||||||
rects.append(rect)
|
|
||||||
|
|
||||||
pc = PatchCollection(rects, facecolor=None, alpha=0.15, edgecolor="k", ls="--")
|
|
||||||
axes[1].add_collection(pc)
|
|
||||||
|
|
||||||
rects = []
|
|
||||||
rect = Rectangle((0.57, 740), 0.098, 140)
|
|
||||||
rects.append(rect)
|
|
||||||
pc = PatchCollection(rects, facecolor=None, alpha=0.15, edgecolor="k", ls="--")
|
|
||||||
axes[2].add_collection(pc)
|
|
||||||
|
|
||||||
con = ConnectionPatch(xyA=(0.625, 735), xyB=(0.625, 740), coordsA="data", coordsB="data",
|
|
||||||
axesA=axes[0], axesB=axes[1], arrowstyle="<->", shrinkB=5, connectionstyle="arc3,rad=.35")
|
|
||||||
axes[1].add_artist(con)
|
|
||||||
con = ConnectionPatch(xyA=(0.725, 885), xyB=(0.725, 880), coordsA="data", coordsB="data",
|
|
||||||
axesA=axes[0], axesB=axes[1], arrowstyle="<->", shrinkB=5, connectionstyle="arc3,rad=-.25")
|
|
||||||
axes[1].add_artist(con)
|
|
||||||
con = ConnectionPatch(xyA=(0.725, 735), xyB=(0.625, 740), coordsA="data", coordsB="data",
|
|
||||||
axesA=axes[1], axesB=axes[2], arrowstyle="<->", shrinkB=5, connectionstyle="arc3,rad=.35")
|
|
||||||
axes[1].add_artist(con)
|
|
||||||
|
|
||||||
axes[0].text(1., 660, "2.")
|
|
||||||
axes[1].text(1.05, 660, "3.")
|
|
||||||
axes[0].text(1.1, 890, "1.")
|
|
||||||
fig.subplots_adjust(bottom=0.1, top=0.8, left=0.1, right=0.9)
|
|
||||||
fig.savefig(os.path.join(figure_folder, "comparisons.pdf"))
|
|
||||||
plt.close()
|
|
||||||
|
|
||||||
|
|
||||||
def foreign_fish_detection(block_map, all_dfs, all_contrasts, all_conditions, current_df=None, cell_name="", store_roc=False):
|
def foreign_fish_detection(block_map, all_dfs, all_contrasts, all_conditions, current_df=None, cell_name="", store_roc=False):
|
||||||
dfs = [current_df] if current_df is not None else all_dfs
|
dfs = [current_df] if current_df is not None else all_dfs
|
||||||
kernels = [0.00025, 0.0005, 0.001, 0.0025]
|
kernels = [0.00025, 0.0005, 0.001, 0.0025]
|
||||||
@ -530,6 +284,7 @@ def estimate_chirp_phase(am, chirp_times):
|
|||||||
|
|
||||||
|
|
||||||
def process_cell(filename, dfs=[], contrasts=[], conditions=[]):
|
def process_cell(filename, dfs=[], contrasts=[], conditions=[]):
|
||||||
|
print(filename)
|
||||||
nf = nix.File.open(filename, nix.FileMode.ReadOnly)
|
nf = nix.File.open(filename, nix.FileMode.ReadOnly)
|
||||||
block_map, all_contrasts, all_dfs, all_conditions = sort_blocks(nf)
|
block_map, all_contrasts, all_dfs, all_conditions = sort_blocks(nf)
|
||||||
if "baseline" in block_map.keys():
|
if "baseline" in block_map.keys():
|
||||||
@ -542,41 +297,16 @@ def process_cell(filename, dfs=[], contrasts=[], conditions=[]):
|
|||||||
return results
|
return results
|
||||||
|
|
||||||
|
|
||||||
def plot_examples(filename, dfs=[], contrasts=[], conditions=[]):
|
|
||||||
nf = nix.File.open(filename, nix.FileMode.ReadOnly)
|
|
||||||
block_map, all_contrasts, all_dfs, all_conditions = sort_blocks(nf)
|
|
||||||
if "baseline" in block_map.keys():
|
|
||||||
baseline_spikes = read_baseline(block_map["baseline"])
|
|
||||||
else:
|
|
||||||
print("ERROR: no baseline data for file %s!" % filename)
|
|
||||||
|
|
||||||
# plot the responses
|
|
||||||
#fig_name = filename.split(os.path.sep)[-1].split(".nix")[0] + "_df_20Hz.pdf"
|
|
||||||
#create_response_plot(block_map, all_dfs, all_contrasts, all_conditions, 20, figure_name=fig_name)
|
|
||||||
#fig_name = filename.split(os.path.sep)[-1].split(".nix")[0] + "_df_-100Hz.pdf"
|
|
||||||
#create_response_plot(block_map, all_dfs, all_contrasts, all_conditions, -100, figure_name=fig_name)
|
|
||||||
|
|
||||||
# sketch showing the comparisons
|
|
||||||
# plot_comparisons(block_map, all_dfs, all_contrasts, all_conditions, 20)
|
|
||||||
|
|
||||||
# plot the discrimination analyses
|
|
||||||
#cell_name = filename.split(os.path.sep)[-1].split(".nix")[0]
|
|
||||||
# results = foreign_fish_detection(block_map, all_dfs, all_contrasts, all_conditions, current_df=20,
|
|
||||||
# cell_name=cell_name, store_roc=True)
|
|
||||||
# pdf = pd.DataFrame(results)
|
|
||||||
# plot_detection_results(pdf, 20, 0.001, cell_name)
|
|
||||||
|
|
||||||
nf.close()
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
|
num_cores = multiprocessing.cpu_count() - 6
|
||||||
nix_files = sorted(glob.glob(os.path.join(data_folder, "cell*.nix")))
|
nix_files = sorted(glob.glob(os.path.join(data_folder, "cell*.nix")))
|
||||||
for nix_file in nix_files:
|
|
||||||
#plot_examples(nix_file, dfs=[20], contrasts=[20], conditions=["self"])
|
|
||||||
results = process_cell(nix_file, dfs=[], contrasts=[20], conditions=["self"])
|
|
||||||
# break
|
|
||||||
embed()
|
|
||||||
|
|
||||||
|
processed_list = Parallel(n_jobs=num_cores)(delayed(process_cell)(nix_file) for nix_file in nix_files)
|
||||||
|
results = []
|
||||||
|
for pr in processed_list:
|
||||||
|
results.extend(pr)
|
||||||
|
df = pd.DataFrame(results)
|
||||||
|
df.to_csv(os.path.join(data_folder, "discimination_results.csv"), sep=";")
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
Loading…
Reference in New Issue
Block a user