larger stimulus range, add didactic figure for
This commit is contained in:
parent
bdbab448ed
commit
511fddbeb2
@ -183,7 +183,7 @@ def simulate_responses(stimulus_params, model_params, repeats=10, deltaf=20):
|
||||
|
||||
def main():
|
||||
models = load_models("models.csv")
|
||||
deltafs = [-200, -100, -20, 20, 100, 200] # Hz, difference frequency between self and other
|
||||
deltafs = [-200, -100, -50, -20, -10, -5, 5, 10, 20, 50, 100, 200] # Hz, difference frequency between self and other
|
||||
stimulus_params = { "eodfs": {"self": 0.0, "other": 0.0}, # eod frequency in Hz, to be overwritten
|
||||
"contrasts": [20, 10, 5, 2.5, 1.25, 0.625, 0.3125],
|
||||
"chirp_size": 100, # Hz, frequency excursion
|
||||
@ -210,7 +210,8 @@ def main():
|
||||
1./stimulus_params["chirp_frequency"])
|
||||
stimulus_params["chirp_times"] = chirp_times
|
||||
simulate_responses(stimulus_params, model_params, repeats=25, deltaf=deltaf)
|
||||
exit() # the first cell only for now!
|
||||
if cell_id == 9:
|
||||
exit() # the first 10 cell only for now!
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -3,8 +3,10 @@ import glob
|
||||
import pandas as pd
|
||||
import nixio as nix
|
||||
import numpy as np
|
||||
import scipy.signal as sig
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.patches import Rectangle
|
||||
from matplotlib.collections import PatchCollection
|
||||
from matplotlib.patches import ConnectionPatch
|
||||
from sklearn.metrics import roc_curve, roc_auc_score
|
||||
from IPython import embed
|
||||
|
||||
@ -320,7 +322,7 @@ def foreign_fish_detection_chirp(block_map, df, all_contrasts, all_conditions, k
|
||||
alone_chirping_snippets = np.zeros((len(chirp_times) * no_other_rates.shape[0], int(chirp_duration / dt)))
|
||||
self_snippets = np.zeros_like(alone_chirping_snippets)
|
||||
other_snippets = np.zeros_like(alone_chirping_snippets)
|
||||
baseline_snippets = np.zeros_like(alone_chirping_snippets)
|
||||
silence_snippets = np.zeros_like(alone_chirping_snippets)
|
||||
|
||||
for i in range(no_other_rates.shape[0]):
|
||||
for j, chirp_time in enumerate(chirp_times):
|
||||
@ -330,9 +332,9 @@ def foreign_fish_detection_chirp(block_map, df, all_contrasts, all_conditions, k
|
||||
alone_chirping_snippets[index, :] = no_other_rates[i, start_index:end_index]
|
||||
self_snippets[index, :] = self_rates[i, start_index:end_index]
|
||||
other_snippets[index, :] = other_rates[i, start_index:end_index]
|
||||
baseline_start_index = int((chirp_time + 1.5 * chirp_duration)/dt)
|
||||
baseline_end_index = baseline_start_index + alone_chirping_snippets.shape[1]
|
||||
baseline_snippets[index, :] = no_other_rates[i, baseline_start_index:baseline_end_index]
|
||||
silence_start_index = int((chirp_time + 1.5 * chirp_duration)/dt)
|
||||
silence_end_index = silence_start_index + alone_chirping_snippets.shape[1]
|
||||
silence_snippets[index, :] = other_rates[i, silence_start_index:silence_end_index]
|
||||
|
||||
# get the distances
|
||||
# 1. Soliloquy
|
||||
@ -340,9 +342,9 @@ def foreign_fish_detection_chirp(block_map, df, all_contrasts, all_conditions, k
|
||||
# 3. I chirp while the other is present compared to self chirping without the other one present
|
||||
# 4. the otherone chrips to me compared to baseline with anyone chirping
|
||||
alone_chirping_dist = within_group_distance(alone_chirping_snippets)
|
||||
baseline_dist = within_group_distance(baseline_snippets)
|
||||
silence_dist = within_group_distance(silence_snippets)
|
||||
self_vs_alone_dist = across_group_distance(alone_chirping_snippets, self_snippets)
|
||||
other_vs_baseline_dist = across_group_distance(baseline_snippets, other_snippets)
|
||||
other_vs_silence_dist = across_group_distance(silence_snippets, other_snippets)
|
||||
|
||||
# sort and perfom ROC analysis for two comparisons
|
||||
# 1. soliloquy vs. self chirping in company
|
||||
@ -351,14 +353,14 @@ def foreign_fish_detection_chirp(block_map, df, all_contrasts, all_conditions, k
|
||||
valid_no_other_distances = alone_chirping_dist[triangle_indices]
|
||||
no_other_temp = np.zeros_like(valid_no_other_distances)
|
||||
|
||||
valid_baseline_distances = baseline_dist[triangle_indices]
|
||||
baseline_temp = np.zeros_like(valid_baseline_distances)
|
||||
valid_silence_distances = silence_dist[triangle_indices]
|
||||
silence_temp = np.zeros_like(valid_silence_distances)
|
||||
|
||||
valid_self_vs_alone_distances = self_vs_alone_dist.ravel()
|
||||
self_vs_alone_temp = np.ones_like(valid_self_vs_alone_distances)
|
||||
|
||||
valid_other_vs_baseline_distances = other_vs_baseline_dist.ravel()
|
||||
other_vs_baseline_temp = np.ones_like(valid_other_vs_baseline_distances)
|
||||
valid_other_vs_silence_distances = other_vs_silence_dist.ravel()
|
||||
other_vs_silence_temp = np.ones_like(valid_other_vs_silence_distances)
|
||||
|
||||
group = np.hstack((no_other_temp, self_vs_alone_temp))
|
||||
score = np.hstack((valid_no_other_distances, valid_self_vs_alone_distances))
|
||||
@ -368,8 +370,8 @@ def foreign_fish_detection_chirp(block_map, df, all_contrasts, all_conditions, k
|
||||
detection_performances.append({"cell": cell_name, "detection_task": "self vs soliloquy", "contrast": contrast, "df": df, "kernel_width": kernel_width, "auc": auc, "true_positives": tpr, "false_positives": fpr})
|
||||
else:
|
||||
detection_performances.append({"cell": cell_name, "detection_task": "self vs soliloquy", "contrast": contrast, "df": df, "kernel_width": kernel_width, "auc": auc})
|
||||
group = np.hstack((baseline_temp, other_vs_baseline_temp))
|
||||
score = np.hstack((valid_baseline_distances, valid_other_vs_baseline_distances))
|
||||
group = np.hstack((silence_temp, other_vs_silence_temp))
|
||||
score = np.hstack((valid_silence_distances, valid_other_vs_silence_distances))
|
||||
fpr, tpr, _ = roc_curve(group, score, pos_label=1)
|
||||
auc = roc_auc_score(group, score)
|
||||
if store_roc:
|
||||
@ -394,14 +396,15 @@ def plot_detection_results(data_frame, df, kernel_width, cell, figure_name=None)
|
||||
contrasts = roc_data.contrast.unique()
|
||||
|
||||
roc_ax = plt.subplot2grid(fig_grid, (i * 2 + i, 0), colspan=3, rowspan=2)
|
||||
roc_ax.set_title(c, fontsize=9, ha="left")
|
||||
roc_ax.set_title(c, fontsize=9, loc="left")
|
||||
auc_ax = plt.subplot2grid(fig_grid, (i * 2 + i, 4), colspan=3, rowspan=2)
|
||||
|
||||
for c in contrasts:
|
||||
tpr = roc_data.true_positives[roc_data.contrast == c].values[0]
|
||||
fpr = roc_data.false_positives[roc_data.contrast == c].values[0]
|
||||
roc_ax.plot(fpr, tpr, label="%.3f" % c, zorder=2)
|
||||
roc_ax.legend(loc="best", fontsize=6, ncol=2, frameon=False)
|
||||
if i == 0:
|
||||
roc_ax.legend(loc="lower right", fontsize=6, ncol=2, frameon=False, handletextpad=0.4, columnspacing=1.0, labelspacing=0.25)
|
||||
roc_ax.plot([0., 1.],[0., 1.], color="k", lw=0.5, ls="--", zorder=0)
|
||||
roc_ax.set_xticks(np.arange(0.0, 1.01, 0.5))
|
||||
roc_ax.set_xticks(np.arange(0.0, 1.01, 0.25), minor=True)
|
||||
@ -418,23 +421,95 @@ def plot_detection_results(data_frame, df, kernel_width, cell, figure_name=None)
|
||||
aucs = np.asarray(condition_results.auc[condition_results.kernel_width == k])
|
||||
aucs_sorted = aucs[np.argsort(contrasts)]
|
||||
contrasts_sorted = np.sort(contrasts)
|
||||
auc_ax.plot(contrasts_sorted, aucs_sorted, marker=".", label=r"$\sigma$: %.4f" % k, zorder=1)
|
||||
auc_ax.plot(contrasts_sorted, aucs_sorted, marker=".", label=r"$\sigma$: %.2f ms" % (k * 1000), zorder=1)
|
||||
if i == len(conditions) - 1:
|
||||
auc_ax.set_xlabel("contrast [%]", fontsize=9)
|
||||
else:
|
||||
auc_ax.set_xticklabels("")
|
||||
auc_ax.set_ylim([0.25, 1.0])
|
||||
auc_ax.set_yticks(np.arange(0.25, 1.01, 0.25))
|
||||
auc_ax.set_yticklabels(np.arange(0.25, 1.01, 0.25), fontsize=8)
|
||||
auc_ax.set_ylabel("discriminability", fontsize=9)
|
||||
auc_ax.legend(ncol=2, fontsize=6, handletextpad=0.4, columnspacing=1.0, labelspacing=0.25)
|
||||
if i == 0:
|
||||
auc_ax.legend(ncol=2, fontsize=6, handletextpad=0.4, columnspacing=1.0, labelspacing=0.25, frameon=False, loc="lower center")
|
||||
auc_ax.plot([min(contrasts), max(contrasts)], [0.5, 0.5], lw=0.5, ls="--", zorder=0)
|
||||
name = figure_name if figure_name is not None else "foreign_fish_detection.pdf"
|
||||
name = (name + ".pdf") if ".pdf" not in name else name
|
||||
plt.savefig(os.path.join(figure_folder, name))
|
||||
fig.savefig(os.path.join(figure_folder, name))
|
||||
|
||||
|
||||
def plot_comparisons(block_map, all_dfs, all_contrasts, all_conditions, current_df):
|
||||
conditions = ["no-other", "self", "other"]
|
||||
condition_labels = ["soliloquy", "self chirping", "other chirping"]
|
||||
min_time = 0.5
|
||||
max_time = min_time + 0.5
|
||||
|
||||
fig = plt.figure(figsize=(6.5, 2.))
|
||||
fig_grid = (3, len(all_conditions)*3+2)
|
||||
axes = []
|
||||
for i, condition in enumerate(conditions):
|
||||
# plot the signals
|
||||
block = block_map[(all_contrasts[0], current_df, condition)]
|
||||
signal, self_freq, other_freq, time = get_signals(block)
|
||||
|
||||
self_eodf = block.metadata["stimulus parameter"]["eodfs"]["self"]
|
||||
other_eodf = block.metadata["stimulus parameter"]["eodfs"]["other"]
|
||||
|
||||
# plot frequency traces
|
||||
ax = plt.subplot2grid(fig_grid, (0, i * 3 + i), rowspan=2, colspan=3, fig=fig)
|
||||
ax.plot(time[(time > min_time) & (time < max_time)], self_freq[(time > min_time) & (time < max_time)],
|
||||
color="#ff7f0e", label="%iHz" % self_eodf)
|
||||
ax.text(min_time-0.05, self_eodf, "%iHz" % self_eodf, color="#ff7f0e", va="center", ha="right", fontsize=9)
|
||||
if other_freq is not None:
|
||||
ax.plot(time[(time > min_time) & (time < max_time)], other_freq[(time > min_time) & (time < max_time)],
|
||||
color="#1f77b4", label="%iHz" % other_eodf)
|
||||
ax.text(min_time-0.05, other_eodf, "%iHz" % other_eodf, color="#1f77b4", va="center", ha="right", fontsize=9)
|
||||
# ax.set_title(condition_labels[i])
|
||||
ax.set_ylim([735, 885])
|
||||
despine(ax, ["top", "bottom", "left", "right"], True)
|
||||
axes.append(ax)
|
||||
|
||||
rects = []
|
||||
rect = Rectangle((0.675, 740), 0.098, 140)
|
||||
rects.append(rect)
|
||||
rect = Rectangle((0.57, 740), 0.098, 140)
|
||||
rects.append(rect)
|
||||
|
||||
pc = PatchCollection(rects, facecolor=None, alpha=0.15, edgecolor="k", ls="--")
|
||||
axes[0].add_collection(pc)
|
||||
|
||||
rects = []
|
||||
rect = Rectangle((0.675, 740), 0.098, 140)
|
||||
rects.append(rect)
|
||||
rect = Rectangle((0.575, 740), 0.098, 140)
|
||||
rects.append(rect)
|
||||
|
||||
pc = PatchCollection(rects, facecolor=None, alpha=0.15, edgecolor="k", ls="--")
|
||||
axes[1].add_collection(pc)
|
||||
|
||||
rects = []
|
||||
rect = Rectangle((0.57, 740), 0.098, 140)
|
||||
rects.append(rect)
|
||||
pc = PatchCollection(rects, facecolor=None, alpha=0.15, edgecolor="k", ls="--")
|
||||
axes[2].add_collection(pc)
|
||||
|
||||
con = ConnectionPatch(xyA=(0.625, 735), xyB=(0.625, 740), coordsA="data", coordsB="data",
|
||||
axesA=axes[0], axesB=axes[1], arrowstyle="<->", shrinkB=5, connectionstyle="arc3,rad=.35")
|
||||
axes[1].add_artist(con)
|
||||
con = ConnectionPatch(xyA=(0.725, 885), xyB=(0.725, 880), coordsA="data", coordsB="data",
|
||||
axesA=axes[0], axesB=axes[1], arrowstyle="<->", shrinkB=5, connectionstyle="arc3,rad=-.25")
|
||||
axes[1].add_artist(con)
|
||||
con = ConnectionPatch(xyA=(0.725, 735), xyB=(0.625, 740), coordsA="data", coordsB="data",
|
||||
axesA=axes[1], axesB=axes[2], arrowstyle="<->", shrinkB=5, connectionstyle="arc3,rad=.35")
|
||||
axes[1].add_artist(con)
|
||||
|
||||
axes[0].text(1., 660, "2.")
|
||||
axes[1].text(1.05, 660, "3.")
|
||||
axes[0].text(1.1, 890, "1.")
|
||||
fig.subplots_adjust(bottom=0.1, top=0.8, left=0.1, right=0.9)
|
||||
fig.savefig(os.path.join(figure_folder, "comparisons.pdf"))
|
||||
plt.close()
|
||||
|
||||
|
||||
def foreign_fish_detection(block_map, all_dfs, all_contrasts, all_conditions, current_df=None, cell_name=""):
|
||||
def foreign_fish_detection(block_map, all_dfs, all_contrasts, all_conditions, current_df=None, cell_name="", store_roc=False):
|
||||
dfs = [current_df] if current_df is not None else all_dfs
|
||||
kernels = [0.00025, 0.0005, 0.001, 0.0025]
|
||||
result_dicts = []
|
||||
@ -442,15 +517,10 @@ def foreign_fish_detection(block_map, all_dfs, all_contrasts, all_conditions, cu
|
||||
for kw in kernels:
|
||||
print("df: %i, kernel: %.4f" % (df, kw))
|
||||
print("Foreign fish detection during beat:")
|
||||
result_dicts.extend(foreign_fish_detection_beat(block_map, df, all_contrasts, all_conditions, kw, cell_name))
|
||||
result_dicts.extend(foreign_fish_detection_beat(block_map, df, all_contrasts, all_conditions, kw, cell_name, store_roc))
|
||||
print("Foreign fish detection during chirp:")
|
||||
result_dicts.extend(foreign_fish_detection_chirp(block_map, df, all_contrasts, all_conditions, kw, cell_name))
|
||||
|
||||
result_dicts.extend(foreign_fish_detection_chirp(block_map, df, all_contrasts, all_conditions, kw, cell_name, store_roc))
|
||||
|
||||
break
|
||||
|
||||
embed()
|
||||
|
||||
return result_dicts
|
||||
|
||||
|
||||
@ -466,21 +536,46 @@ def process_cell(filename, dfs=[], contrasts=[], conditions=[]):
|
||||
baseline_spikes = read_baseline(block_map["baseline"])
|
||||
else:
|
||||
print("ERROR: no baseline data for file %s!" % filename)
|
||||
# fig_name = filename.split(os.path.sep)[-1].split(".nix")[0] + "_df_20Hz.pdf"
|
||||
# create_response_plot(block_map, all_dfs, all_contrasts, all_conditions, 20, figure_name=fig_name)
|
||||
# fig_name = filename.split(os.path.sep)[-1].split(".nix")[0] + "_df_-100Hz.pdf"
|
||||
# create_response_plot(block_map, all_dfs, all_contrasts, all_conditions, -100, figure_name=fig_name)
|
||||
results = foreign_fish_detection(block_map, all_dfs, all_contrasts, all_conditions, current_df=20,
|
||||
cell_name=filename.split(os.path.sep)[-1].split(".nix")[0])
|
||||
results = foreign_fish_detection(block_map, all_dfs, all_contrasts, all_conditions, current_df=None,
|
||||
cell_name=filename.split(os.path.sep)[-1].split(".nix")[0], store_roc=False)
|
||||
nf.close()
|
||||
return results
|
||||
|
||||
|
||||
def plot_examples(filename, dfs=[], contrasts=[], conditions=[]):
|
||||
nf = nix.File.open(filename, nix.FileMode.ReadOnly)
|
||||
block_map, all_contrasts, all_dfs, all_conditions = sort_blocks(nf)
|
||||
if "baseline" in block_map.keys():
|
||||
baseline_spikes = read_baseline(block_map["baseline"])
|
||||
else:
|
||||
print("ERROR: no baseline data for file %s!" % filename)
|
||||
|
||||
nf.close()
|
||||
# plot the responses
|
||||
#fig_name = filename.split(os.path.sep)[-1].split(".nix")[0] + "_df_20Hz.pdf"
|
||||
#create_response_plot(block_map, all_dfs, all_contrasts, all_conditions, 20, figure_name=fig_name)
|
||||
#fig_name = filename.split(os.path.sep)[-1].split(".nix")[0] + "_df_-100Hz.pdf"
|
||||
#create_response_plot(block_map, all_dfs, all_contrasts, all_conditions, -100, figure_name=fig_name)
|
||||
|
||||
# sketch showing the comparisons
|
||||
# plot_comparisons(block_map, all_dfs, all_contrasts, all_conditions, 20)
|
||||
|
||||
# plot the discrimination analyses
|
||||
#cell_name = filename.split(os.path.sep)[-1].split(".nix")[0]
|
||||
# results = foreign_fish_detection(block_map, all_dfs, all_contrasts, all_conditions, current_df=20,
|
||||
# cell_name=cell_name, store_roc=True)
|
||||
# pdf = pd.DataFrame(results)
|
||||
# plot_detection_results(pdf, 20, 0.001, cell_name)
|
||||
|
||||
nf.close()
|
||||
|
||||
|
||||
def main():
|
||||
nix_files = sorted(glob.glob(os.path.join(data_folder, "cell*.nix")))
|
||||
for nix_file in nix_files:
|
||||
process_cell(nix_file, dfs=[20], contrasts=[20], conditions=["self"])
|
||||
#plot_examples(nix_file, dfs=[20], contrasts=[20], conditions=["self"])
|
||||
results = process_cell(nix_file, dfs=[], contrasts=[20], conditions=["self"])
|
||||
# break
|
||||
embed()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
Loading…
Reference in New Issue
Block a user