P-unit_model/Figures_Baseline.py
2021-01-09 23:59:34 +01:00

415 lines
16 KiB
Python

import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import numpy as np
import os
from my_util import functions as fu
from parser.CellData import CellData
from experiments.Baseline import BaselineCellData
from experiments.FiCurve import FICurveCellData, FICurveModel
import Figure_constants as consts
from fitting.ModelFit import get_best_fit
EXAMPLE_CELL = "data/final/2012-12-20-ac-invivo-1"
def main():
# data_isi_histogram()
# data_mean_freq_step_stimulus_examples()
# data_mean_freq_step_stimulus_with_detections()
# data_fi_curve()
p_unit_example()
fi_point_detection()
p_unit_heterogeneity()
# test_fi_curve_colors()
pass
def p_unit_heterogeneity():
data_dir = "data/final/"
strong_bursty_cell = "2014-01-10-ae-invivo-1"
bursty_cell = "2014-03-19-ad-invivo-1"
non_bursty_cell = "2012-12-21-am-invivo-1"
cells = [non_bursty_cell, bursty_cell, strong_bursty_cell]
fig = plt.figure(tight_layout=True, figsize=consts.FIG_SIZE_MEDIUM_WIDE)
gs = gridspec.GridSpec(3, 2, width_ratios=(3, 1))
# a bit of trace with detected spikes
for i, cell in enumerate(cells):
cell_dir = data_dir + cell + "/"
cell_data = CellData(cell_dir)
step = cell_data.get_sampling_interval()
time = cell_data.get_base_traces(cell_data.TIME)[0]
v1 = cell_data.get_base_traces(cell_data.V1)[0]
spikes = cell_data.get_base_spikes()[0]
time_offset = 0
duration = 0.1
idx_start = int(np.rint(time_offset / step))
idx_end = int(np.rint((time_offset + duration) / step))
ax = fig.add_subplot(gs[i, 0])
ax.plot(np.array(time[idx_start:idx_end]) * 1000, v1[idx_start:idx_end], color=consts.COLOR_DATA)
y_lims = ax.get_ylim()
event_tick_length = (y_lims[1] - y_lims[0]) / 10
ax.eventplot([s * 1000 for s in spikes if time_offset <= s < time_offset+duration],
colors="black", lineoffsets=max(v1[idx_start:idx_end])+1.5, linelengths=event_tick_length)
ax.set_ylabel("Voltage [mV]")
ax.set_xlim((0, duration*1000))
if i == 2:
ax.set_xlabel("Time [ms]")
ax.set_yticks([-5, 5, 15])
for i, cell in enumerate(cells):
cell_dir = data_dir + cell + "/"
cell_data = CellData(cell_dir)
eodf = cell_data.get_eod_frequency()
cell_isi = BaselineCellData(cell_data).get_interspike_intervals() * eodf
bins = np.arange(0, 0.025, 0.0001) * eodf
ax = fig.add_subplot(gs[i, 1])
ax.hist(cell_isi, bins=bins, density=True, color=consts.COLOR_DATA)
ax.set_ylabel("Density")
ax.set_yticklabels(["{:.1f}".format(t) for t in ax.get_yticks()])
if i == 2:
ax.set_xlabel("ISI [EOD periods]")
plt.tight_layout()
fig.align_ylabels()
consts.set_figure_labels(xoffset=-2.5)
fig.label_axes()
plt.savefig(consts.SAVE_FOLDER + "isi_hist_heterogeneity.pdf", transparent=True)
plt.close()
def p_unit_example():
cell = EXAMPLE_CELL
cell_data = CellData(cell)
print("p-unit example eodf:", cell_data.get_eod_frequency())
base = BaselineCellData(cell_data)
base.load_values(cell_data.get_data_path())
print("burstiness of example cell:", base.get_burstiness())
fi = FICurveCellData(cell_data, cell_data.get_fi_contrasts(), save_dir=cell_data.get_data_path())
step = cell_data.get_sampling_interval()
# Overview figure for p-unit behaviour
fig = plt.figure(tight_layout=True, figsize=consts.FIG_SIZE_LARGE)
gs = gridspec.GridSpec(3, 2)
# a bit of trace with detected spikes
ax = fig.add_subplot(gs[0, :])
v1 = cell_data.get_base_traces(cell_data.V1)[0]
time = cell_data.get_base_traces(cell_data.TIME)[0]
spiketimes = cell_data.get_base_spikes()[0]
start = 0
duration = 0.10
ax.plot((np.array(time[:int(duration/step)]) - start) * 1000, v1[:int(duration/step)], consts.COLOR_DATA)
ax.eventplot([s * 1000 for s in spiketimes if start < s < start + duration], lineoffsets=max(v1[:int(duration/step)])+1.25,
color="black", linelengths=2)
ax.set_ylabel('Voltage [mV]')
ax.set_xlabel('Time [ms]')
ax.set_title("Baseline Firing")
ax.set_xlim((0, duration*1000))
# ISI-hist
ax = fig.add_subplot(gs[1, 0])
eod_period = 1.0 / cell_data.get_eod_frequency()
isi = np.array(base.get_interspike_intervals()) / eod_period # ISI in ms
maximum = max(isi)
bins = np.arange(0, maximum * 1.01, 0.1)
ax.hist(isi, bins=bins, color=consts.COLOR_DATA, density=True)
ax.set_ylabel("Density")
ax.set_xlabel("ISI [EOD periods]")
ax.set_title("ISI Histogram")
# Serial correlation
ax = fig.add_subplot(gs[1, 1])
sc = base.get_serial_correlation(10)
ax.plot(range(11), [0 for _ in range(11)], color="darkgrey", alpha=0.8)
ax.plot(range(11), [1] + list(sc), color=consts.COLOR_DATA)
ax.plot(range(11), [1] + list(sc), '+', color="black")
ax.set_xlabel("Lag")
ax.set_ylabel("SC")
ax.set_title("Serial Correlation")
ax.set_ylim((-1, 1))
ax.set_xlim((0, 10))
ax.set_xticks([0, 2, 4, 6, 8, 10])
# ax.set_xticklabels([0, 2, 4, 6, 8, 10])
# FI-Curve trace
ax = fig.add_subplot(gs[2, 0])
f_trace_times, f_traces = fi.get_mean_time_and_freq_traces()
part = 0.4 + 0.2 + 0.2 # stim duration + delay up front and a part of the "delay" at the back
idx = int(part/step)
ax.plot(f_trace_times[-1][:idx], f_traces[-1][:idx], color=consts.COLOR_DATA)
# strength = 200
# smoothed = np.convolve(f_traces[-1][:idx], np.ones(strength)/strength)
# ax.plot(f_trace_times[-1][:idx], smoothed[int(strength/2):idx + int(strength/2)])
ax.set_xlim((-0.2, part-0.2))
ylim = ax.get_ylim()
ax.set_ylim((0, ylim[1]))
ax.set_xlabel("Time [s]")
ax.set_ylabel("Frequency [Hz]")
ax.set_title("Step Response")
# FI-Curve
ax = fig.add_subplot(gs[2, 1])
contrasts = fi.stimulus_values
f_zeros = fi.get_f_zero_frequencies()
f_infties = fi.get_f_inf_frequencies()
ax.plot(contrasts, f_zeros, ',', marker=consts.f0_marker, color=consts.COLOR_DATA_f0)
ax.plot(contrasts, f_infties, ',', marker=consts.finf_marker, color=consts.COLOR_DATA_finf)
x_values = np.arange(min(contrasts), max(contrasts) + 0.0001, (max(contrasts)-min(contrasts)) / 1000)
f_zero_fit = [fu.full_boltzmann(x, fi.f_zero_fit[0], fi.f_zero_fit[1], fi.f_zero_fit[2], fi.f_zero_fit[3]) for x in x_values]
f_inf_fit = [fu.clipped_line(x, fi.f_inf_fit[0], fi.f_inf_fit[1]) for x in x_values]
ax.plot(x_values, f_zero_fit, color=consts.COLOR_DATA_f0)
ax.plot(x_values, f_inf_fit, color=consts.COLOR_DATA_finf)
# ax.set_xlim((0, 10))
# ax.set_ylim((-1, 1))
ax.set_xlabel("Contrast")
ax.set_ylabel("Frequency [Hz]")
ax.set_xticks([-0.2, -0.1, 0, 0.1, 0.2])
ax.set_xlim((-0.21, 0.2))
ylim = ax.get_ylim()
ax.set_ylim((0, ylim[1]))
ax.set_title("f-I Curve")
plt.tight_layout()
consts.set_figure_labels(xoffset=-2.5, yoffset=2.2)
fig.label_axes()
plt.savefig("thesis/figures/p_unit_example.pdf", transparent=True)
plt.close()
def fi_point_detection():
cell = EXAMPLE_CELL
cell_data = CellData(cell)
fi = FICurveCellData(cell_data, cell_data.get_fi_contrasts())
step = cell_data.get_sampling_interval()
fig, axes = plt.subplots(1, 2, figsize=consts.FIG_SIZE_MEDIUM_WIDE, sharey="row")
f_trace_times, f_traces = fi.get_mean_time_and_freq_traces()
part = 0.4 + 0.2 + 0.2 # stim duration + delay up front and a part of the "delay" at the back
idx = int(part / step)
f_zero = fi.get_f_zero_frequencies()[-1]
f_zero_idx = fi.indices_f_zero[-1]
f_inf = fi.get_f_inf_frequencies()[-1]
f_inf_idx = fi.indices_f_inf[-1]
f_baseline = fi.get_f_baseline_frequencies()[-1]
f_base_idx = fi.indices_f_baseline[-1]
axes[0].plot(f_trace_times[-1][:idx], f_traces[-1][:idx], color=consts.COLOR_DATA)
axes[0].plot([f_trace_times[-1][idx] for idx in f_zero_idx], (f_zero, ), ",", marker=consts.f0_marker, color=consts.COLOR_DATA_f0)
axes[0].plot([f_trace_times[-1][idx] for idx in f_inf_idx], (f_inf, f_inf), color=consts.COLOR_DATA_finf, linewidth=4)
axes[0].plot([f_trace_times[-1][idx] for idx in f_base_idx], (f_baseline, f_baseline), color="grey", linewidth=4)
# mark stim start and end:
stim_start = cell_data.get_stimulus_start()
stim_end = cell_data.get_stimulus_end()
axes[0].plot([stim_start, stim_end], (100, 100), color="black", linewidth=3)
# axes[0].plot([stim_start]*2, (0, fi.get_f_baseline_frequencies()[0]), color="darkgrey")
# axes[0].plot([stim_end]*2, (0, fi.get_f_baseline_frequencies()[0]), color="darkgrey")
axes[0].set_xlim((-0.2, part - 0.2))
ylimits = axes[0].get_ylim()
axes[0].set_xlabel("Time [s]")
axes[0].set_ylabel("Frequency [Hz]")
axes[0].set_title("Step Response")
contrasts = fi.stimulus_values
f_zeros = fi.get_f_zero_frequencies()
f_infties = fi.get_f_inf_frequencies()
axes[1].plot(contrasts, f_zeros, ",", marker=consts.f0_marker, color=consts.COLOR_DATA_f0)
axes[1].plot(contrasts, f_infties, ",", marker=consts.finf_marker, color=consts.COLOR_DATA_finf)
x_values = np.arange(min(contrasts), max(contrasts) + 0.0001, (max(contrasts) - min(contrasts)) / 1000)
f_zero_fit = [fu.full_boltzmann(x, fi.f_zero_fit[0], fi.f_zero_fit[1], fi.f_zero_fit[2], fi.f_zero_fit[3]) for x in
x_values]
f_inf_fit = [fu.clipped_line(x, fi.f_inf_fit[0], fi.f_inf_fit[1]) for x in x_values]
axes[1].plot(x_values, f_zero_fit, color=consts.COLOR_DATA_f0)
axes[1].plot(x_values, f_inf_fit, color=consts.COLOR_DATA_finf)
axes[1].set_xlabel("Contrast")
# axes[1].set_ylabel("Frequency in Hz")
axes[1].set_title("f-I Curve")
axes[1].set_ylim((0, ylimits[1]))
plt.tight_layout()
consts.set_figure_labels(xoffset=-2.5)
fig.label_axes()
plt.savefig("thesis/figures/f_point_detection.pdf", transparent=True)
plt.close()
def data_fi_curve():
cell = "data/final/2013-04-17-ac-invivo-1/"
cell_data = CellData(cell)
fi = FICurveCellData(cell_data, cell_data.get_fi_contrasts())
fi.plot_fi_curve()
def data_mean_freq_step_stimulus_with_detections():
cell = "data/final/2013-04-17-ac-invivo-1/"
cell_data = CellData(cell)
fi = FICurveCellData(cell_data, cell_data.get_fi_contrasts())
mean_times, mean_freqs = fi.get_mean_time_and_freq_traces()
idx = -1
time = np.array(mean_times[idx])
freq = np.array(mean_freqs[idx])
f_inf = fi.f_inf_frequencies[idx]
f_zero = fi.f_zero_frequencies[idx]
plt.plot(time, freq, color=consts.COLOR_DATA)
plt.plot(time[freq == f_zero][0], f_zero, "o", color="black")
f_inf_time = time[(0.2 < time) & (time < 0.4)]
plt.plot(f_inf_time, [f_inf for _ in f_inf_time], color="black")
plt.xlim((-0.1, 0.6))
plt.show()
def data_mean_freq_step_stimulus_examples():
# todo smooth! add f_0, f_inf, f_base to it?
cell = "data/invivo/2013-04-17-ac-invivo-1/"
cell_data = CellData(cell)
fi = FICurveCellData(cell_data, cell_data.get_fi_contrasts())
time_traces, freq_traces = fi.get_time_and_freq_traces()
mean_times, mean_freqs = fi.get_mean_time_and_freq_traces()
used_idicies = (0, 7, -1)
fig, axes = plt.subplots(len(used_idicies), figsize=(8, 12), sharex=True, sharey=True)
for ax_idx, idx in enumerate(used_idicies):
sv = fi.stimulus_values[idx]
# for j in range(len(time_traces[i])):
# axes[i].plot(time_traces[i][j], freq_traces[i][j], color="gray", alpha=0.5)
axes[ax_idx].plot(mean_times[idx], mean_freqs[idx], color=consts.COLOR_DATA)
# plt.plot(mean_times[i], mean_freqs[i], color="black")
axes[ax_idx].set_ylabel("Frequency [Hz]")
axes[ax_idx].set_xlim((-0.2, 0.6))
axes[ax_idx].set_title("Contrast {:.2f} ({:} trials)".format(sv, len(time_traces[idx])))
axes[ax_idx].set_xlabel("Time [s]")
plt.show()
def data_isi_histogram(recalculate=True):
# if isis loadable - load
name = "isi_cell_data.npy"
path = os.path.join(consts.SAVE_FOLDER, name)
if os.path.exists(path) and not recalculate:
isis = np.load(path)
print("loaded")
else:
# if not get them from the cell
cell = "data/invivo/2013-04-17-ac-invivo-1/" # not bursty
# cell = "data/invivo/2014-12-03-ad-invivo-1/" # half bursty
# cell = "data/invivo/2015-01-20-ad-invivo-1/" # does triple peaks...
# cell = "data/invivo/2018-05-08-ae-invivo-1/" # a bit bursty
# cell = "data/invivo/2013-04-10-af-invivo-1/" # a bit bursty
cell_data = CellData(cell)
base = BaselineCellData(cell_data)
isis = np.array(base.get_interspike_intervals())
# base.plot_baseline(position=0,time_length=10)
# save isis
np.save(path, isis)
isis = isis * 1000
# plot histogram
bins = np.arange(0, 30.1, 0.1)
plt.hist(isis, bins=bins, color=consts.COLOR_DATA)
plt.xlabel("Inter spike intervals [ms]")
plt.ylabel("Count")
plt.tight_layout()
plt.show()
def test_fi_curve_colors():
example_cell_fit = "results/final_2/2012-12-20-ac-invivo-1"
cell = EXAMPLE_CELL
cell_data = CellData(cell)
fit = get_best_fit(example_cell_fit)
fig, axes = plt.subplots(1, 3)
axes[0].set_title("Cell")
fi_curve = FICurveCellData(cell_data, cell_data.get_fi_contrasts(), save_dir=cell_data.get_data_path())
contrasts = cell_data.get_fi_contrasts()
f_zeros = fi_curve.get_f_zero_frequencies()
f_infs = fi_curve.get_f_inf_frequencies()
axes[0].plot(contrasts, f_zeros, ',', marker=consts.f0_marker, color=consts.COLOR_DATA_f0)
axes[0].plot(contrasts, f_infs, ',', marker=consts.finf_marker, color=consts.COLOR_DATA_finf)
x_values = np.arange(min(contrasts), max(contrasts), (max(contrasts) - min(contrasts)) / 1000)
f_inf_fit = fi_curve.f_inf_fit
f_zero_fit = fi_curve.f_zero_fit
f_zero_fit = [fu.full_boltzmann(x, f_zero_fit[0], f_zero_fit[1], f_zero_fit[2], f_zero_fit[3]) for x in x_values]
f_inf_fit = [fu.clipped_line(x, f_inf_fit[0], f_inf_fit[1]) for x in x_values]
axes[0].plot(x_values, f_zero_fit, color=consts.COLOR_DATA_f0)
axes[0].plot(x_values, f_inf_fit, color=consts.COLOR_DATA_finf)
axes[2].plot(x_values, f_zero_fit, color=consts.COLOR_DATA_f0)
axes[2].plot(x_values, f_inf_fit, color=consts.COLOR_DATA_finf)
axes[1].set_title("Model")
model = fit.get_model()
fi_curve = FICurveModel(model, contrasts, eod_frequency=cell_data.get_eod_frequency())
f_zeros = fi_curve.get_f_zero_frequencies()
f_infs = fi_curve.get_f_inf_frequencies()
axes[1].plot(contrasts, f_zeros, ',', marker=consts.f0_marker, color=consts.COLOR_MODEL_f0)
axes[1].plot(contrasts, f_infs, ',', marker=consts.finf_marker, color=consts.COLOR_MODEL_finf)
x_values = np.arange(min(contrasts), max(contrasts), (max(contrasts) - min(contrasts)) / 1000)
f_inf_fit = fi_curve.f_inf_fit
f_zero_fit = fi_curve.f_zero_fit
f_zero_fit = [fu.full_boltzmann(x, f_zero_fit[0], f_zero_fit[1], f_zero_fit[2], f_zero_fit[3]) for x in x_values]
f_inf_fit = [fu.clipped_line(x, f_inf_fit[0], f_inf_fit[1]) for x in x_values]
axes[1].plot(x_values, f_zero_fit, color=consts.COLOR_MODEL_f0)
axes[1].plot(x_values, f_inf_fit, color=consts.COLOR_MODEL_finf)
axes[2].plot(contrasts, f_zeros, ",", marker=consts.f0_marker, color=consts.COLOR_MODEL_f0)
axes[2].plot(contrasts, f_infs, ",", marker=consts.finf_marker, color=consts.COLOR_MODEL_finf)
plt.show()
plt.close()
if __name__ == '__main__':
main()