import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import numpy as np import os from my_util import functions as fu from parser.CellData import CellData from experiments.Baseline import BaselineCellData from experiments.FiCurve import FICurveCellData, FICurveModel import Figure_constants as consts from fitting.ModelFit import get_best_fit EXAMPLE_CELL = "data/final/2012-12-20-ac-invivo-1" def main(): # data_isi_histogram() # data_mean_freq_step_stimulus_examples() # data_mean_freq_step_stimulus_with_detections() # data_fi_curve() p_unit_example() fi_point_detection() p_unit_heterogeneity() # test_fi_curve_colors() pass def p_unit_heterogeneity(): data_dir = "data/final/" strong_bursty_cell = "2014-01-10-ae-invivo-1" bursty_cell = "2014-03-19-ad-invivo-1" non_bursty_cell = "2012-12-21-am-invivo-1" cells = [non_bursty_cell, bursty_cell, strong_bursty_cell] fig = plt.figure(tight_layout=True, figsize=consts.FIG_SIZE_MEDIUM_WIDE) gs = gridspec.GridSpec(3, 2, width_ratios=(3, 1)) # a bit of trace with detected spikes for i, cell in enumerate(cells): cell_dir = data_dir + cell + "/" cell_data = CellData(cell_dir) step = cell_data.get_sampling_interval() time = cell_data.get_base_traces(cell_data.TIME)[0] v1 = cell_data.get_base_traces(cell_data.V1)[0] spikes = cell_data.get_base_spikes()[0] time_offset = 0 duration = 0.1 idx_start = int(np.rint(time_offset / step)) idx_end = int(np.rint((time_offset + duration) / step)) ax = fig.add_subplot(gs[i, 0]) ax.plot(np.array(time[idx_start:idx_end]) * 1000, v1[idx_start:idx_end], color=consts.COLOR_DATA) y_lims = ax.get_ylim() event_tick_length = (y_lims[1] - y_lims[0]) / 10 ax.eventplot([s * 1000 for s in spikes if time_offset <= s < time_offset+duration], colors="black", lineoffsets=max(v1[idx_start:idx_end])+1.5, linelengths=event_tick_length) ax.set_ylabel("Voltage [mV]") ax.set_xlim((0, duration*1000)) if i == 2: ax.set_xlabel("Time [ms]") ax.set_yticks([-5, 5, 15]) for i, cell in enumerate(cells): cell_dir = data_dir + cell + "/" cell_data = CellData(cell_dir) eodf = cell_data.get_eod_frequency() cell_isi = BaselineCellData(cell_data).get_interspike_intervals() * eodf bins = np.arange(0, 0.025, 0.0001) * eodf ax = fig.add_subplot(gs[i, 1]) ax.hist(cell_isi, bins=bins, density=True, color=consts.COLOR_DATA) ax.set_ylabel("Density") ax.set_yticklabels(["{:.1f}".format(t) for t in ax.get_yticks()]) if i == 2: ax.set_xlabel("ISI [EOD periods]") plt.tight_layout() fig.align_ylabels() consts.set_figure_labels(xoffset=-2.5) fig.label_axes() plt.savefig(consts.SAVE_FOLDER + "isi_hist_heterogeneity.pdf", transparent=True) plt.close() def p_unit_example(): cell = EXAMPLE_CELL cell_data = CellData(cell) print("p-unit example eodf:", cell_data.get_eod_frequency()) base = BaselineCellData(cell_data) base.load_values(cell_data.get_data_path()) print("burstiness of example cell:", base.get_burstiness()) fi = FICurveCellData(cell_data, cell_data.get_fi_contrasts(), save_dir=cell_data.get_data_path()) step = cell_data.get_sampling_interval() # Overview figure for p-unit behaviour fig = plt.figure(tight_layout=True, figsize=consts.FIG_SIZE_LARGE) gs = gridspec.GridSpec(3, 2) # a bit of trace with detected spikes ax = fig.add_subplot(gs[0, :]) v1 = cell_data.get_base_traces(cell_data.V1)[0] time = cell_data.get_base_traces(cell_data.TIME)[0] spiketimes = cell_data.get_base_spikes()[0] start = 0 duration = 0.10 ax.plot((np.array(time[:int(duration/step)]) - start) * 1000, v1[:int(duration/step)], consts.COLOR_DATA) ax.eventplot([s * 1000 for s in spiketimes if start < s < start + duration], lineoffsets=max(v1[:int(duration/step)])+1.25, color="black", linelengths=2) ax.set_ylabel('Voltage [mV]') ax.set_xlabel('Time [ms]') ax.set_title("Baseline Firing") ax.set_xlim((0, duration*1000)) # ISI-hist ax = fig.add_subplot(gs[1, 0]) eod_period = 1.0 / cell_data.get_eod_frequency() isi = np.array(base.get_interspike_intervals()) / eod_period # ISI in ms maximum = max(isi) bins = np.arange(0, maximum * 1.01, 0.1) ax.hist(isi, bins=bins, color=consts.COLOR_DATA, density=True) ax.set_ylabel("Density") ax.set_xlabel("ISI [EOD periods]") ax.set_title("ISI Histogram") # Serial correlation ax = fig.add_subplot(gs[1, 1]) sc = base.get_serial_correlation(10) ax.plot(range(11), [0 for _ in range(11)], color="darkgrey", alpha=0.8) ax.plot(range(11), [1] + list(sc), color=consts.COLOR_DATA) ax.plot(range(11), [1] + list(sc), '+', color="black") ax.set_xlabel("Lag") ax.set_ylabel("SC") ax.set_title("Serial Correlation") ax.set_ylim((-1, 1)) ax.set_xlim((0, 10)) ax.set_xticks([0, 2, 4, 6, 8, 10]) # ax.set_xticklabels([0, 2, 4, 6, 8, 10]) # FI-Curve trace ax = fig.add_subplot(gs[2, 0]) f_trace_times, f_traces = fi.get_mean_time_and_freq_traces() part = 0.4 + 0.2 + 0.2 # stim duration + delay up front and a part of the "delay" at the back idx = int(part/step) ax.plot(f_trace_times[-1][:idx], f_traces[-1][:idx], color=consts.COLOR_DATA) # strength = 200 # smoothed = np.convolve(f_traces[-1][:idx], np.ones(strength)/strength) # ax.plot(f_trace_times[-1][:idx], smoothed[int(strength/2):idx + int(strength/2)]) ax.set_xlim((-0.2, part-0.2)) ylim = ax.get_ylim() ax.set_ylim((0, ylim[1])) ax.set_xlabel("Time [s]") ax.set_ylabel("Frequency [Hz]") ax.set_title("Step Response") # FI-Curve ax = fig.add_subplot(gs[2, 1]) contrasts = fi.stimulus_values f_zeros = fi.get_f_zero_frequencies() f_infties = fi.get_f_inf_frequencies() ax.plot(contrasts, f_zeros, ',', marker=consts.f0_marker, color=consts.COLOR_DATA_f0) ax.plot(contrasts, f_infties, ',', marker=consts.finf_marker, color=consts.COLOR_DATA_finf) x_values = np.arange(min(contrasts), max(contrasts) + 0.0001, (max(contrasts)-min(contrasts)) / 1000) f_zero_fit = [fu.full_boltzmann(x, fi.f_zero_fit[0], fi.f_zero_fit[1], fi.f_zero_fit[2], fi.f_zero_fit[3]) for x in x_values] f_inf_fit = [fu.clipped_line(x, fi.f_inf_fit[0], fi.f_inf_fit[1]) for x in x_values] ax.plot(x_values, f_zero_fit, color=consts.COLOR_DATA_f0) ax.plot(x_values, f_inf_fit, color=consts.COLOR_DATA_finf) # ax.set_xlim((0, 10)) # ax.set_ylim((-1, 1)) ax.set_xlabel("Contrast") ax.set_ylabel("Frequency [Hz]") ax.set_xticks([-0.2, -0.1, 0, 0.1, 0.2]) ax.set_xlim((-0.21, 0.2)) ylim = ax.get_ylim() ax.set_ylim((0, ylim[1])) ax.set_title("f-I Curve") plt.tight_layout() consts.set_figure_labels(xoffset=-2.5, yoffset=2.2) fig.label_axes() plt.savefig("thesis/figures/p_unit_example.pdf", transparent=True) plt.close() def fi_point_detection(): cell = EXAMPLE_CELL cell_data = CellData(cell) fi = FICurveCellData(cell_data, cell_data.get_fi_contrasts()) step = cell_data.get_sampling_interval() fig, axes = plt.subplots(1, 2, figsize=consts.FIG_SIZE_MEDIUM_WIDE, sharey="row") f_trace_times, f_traces = fi.get_mean_time_and_freq_traces() part = 0.4 + 0.2 + 0.2 # stim duration + delay up front and a part of the "delay" at the back idx = int(part / step) f_zero = fi.get_f_zero_frequencies()[-1] f_zero_idx = fi.indices_f_zero[-1] f_inf = fi.get_f_inf_frequencies()[-1] f_inf_idx = fi.indices_f_inf[-1] f_baseline = fi.get_f_baseline_frequencies()[-1] f_base_idx = fi.indices_f_baseline[-1] axes[0].plot(f_trace_times[-1][:idx], f_traces[-1][:idx], color=consts.COLOR_DATA) axes[0].plot([f_trace_times[-1][idx] for idx in f_zero_idx], (f_zero, ), ",", marker=consts.f0_marker, color=consts.COLOR_DATA_f0) axes[0].plot([f_trace_times[-1][idx] for idx in f_inf_idx], (f_inf, f_inf), color=consts.COLOR_DATA_finf, linewidth=4) axes[0].plot([f_trace_times[-1][idx] for idx in f_base_idx], (f_baseline, f_baseline), color="grey", linewidth=4) # mark stim start and end: stim_start = cell_data.get_stimulus_start() stim_end = cell_data.get_stimulus_end() axes[0].plot([stim_start, stim_end], (100, 100), color="black", linewidth=3) # axes[0].plot([stim_start]*2, (0, fi.get_f_baseline_frequencies()[0]), color="darkgrey") # axes[0].plot([stim_end]*2, (0, fi.get_f_baseline_frequencies()[0]), color="darkgrey") axes[0].set_xlim((-0.2, part - 0.2)) ylimits = axes[0].get_ylim() axes[0].set_xlabel("Time [s]") axes[0].set_ylabel("Frequency [Hz]") axes[0].set_title("Step Response") contrasts = fi.stimulus_values f_zeros = fi.get_f_zero_frequencies() f_infties = fi.get_f_inf_frequencies() axes[1].plot(contrasts, f_zeros, ",", marker=consts.f0_marker, color=consts.COLOR_DATA_f0) axes[1].plot(contrasts, f_infties, ",", marker=consts.finf_marker, color=consts.COLOR_DATA_finf) x_values = np.arange(min(contrasts), max(contrasts) + 0.0001, (max(contrasts) - min(contrasts)) / 1000) f_zero_fit = [fu.full_boltzmann(x, fi.f_zero_fit[0], fi.f_zero_fit[1], fi.f_zero_fit[2], fi.f_zero_fit[3]) for x in x_values] f_inf_fit = [fu.clipped_line(x, fi.f_inf_fit[0], fi.f_inf_fit[1]) for x in x_values] axes[1].plot(x_values, f_zero_fit, color=consts.COLOR_DATA_f0) axes[1].plot(x_values, f_inf_fit, color=consts.COLOR_DATA_finf) axes[1].set_xlabel("Contrast") # axes[1].set_ylabel("Frequency in Hz") axes[1].set_title("f-I Curve") axes[1].set_ylim((0, ylimits[1])) plt.tight_layout() consts.set_figure_labels(xoffset=-2.5) fig.label_axes() plt.savefig("thesis/figures/f_point_detection.pdf", transparent=True) plt.close() def data_fi_curve(): cell = "data/final/2013-04-17-ac-invivo-1/" cell_data = CellData(cell) fi = FICurveCellData(cell_data, cell_data.get_fi_contrasts()) fi.plot_fi_curve() def data_mean_freq_step_stimulus_with_detections(): cell = "data/final/2013-04-17-ac-invivo-1/" cell_data = CellData(cell) fi = FICurveCellData(cell_data, cell_data.get_fi_contrasts()) mean_times, mean_freqs = fi.get_mean_time_and_freq_traces() idx = -1 time = np.array(mean_times[idx]) freq = np.array(mean_freqs[idx]) f_inf = fi.f_inf_frequencies[idx] f_zero = fi.f_zero_frequencies[idx] plt.plot(time, freq, color=consts.COLOR_DATA) plt.plot(time[freq == f_zero][0], f_zero, "o", color="black") f_inf_time = time[(0.2 < time) & (time < 0.4)] plt.plot(f_inf_time, [f_inf for _ in f_inf_time], color="black") plt.xlim((-0.1, 0.6)) plt.show() def data_mean_freq_step_stimulus_examples(): # todo smooth! add f_0, f_inf, f_base to it? cell = "data/invivo/2013-04-17-ac-invivo-1/" cell_data = CellData(cell) fi = FICurveCellData(cell_data, cell_data.get_fi_contrasts()) time_traces, freq_traces = fi.get_time_and_freq_traces() mean_times, mean_freqs = fi.get_mean_time_and_freq_traces() used_idicies = (0, 7, -1) fig, axes = plt.subplots(len(used_idicies), figsize=(8, 12), sharex=True, sharey=True) for ax_idx, idx in enumerate(used_idicies): sv = fi.stimulus_values[idx] # for j in range(len(time_traces[i])): # axes[i].plot(time_traces[i][j], freq_traces[i][j], color="gray", alpha=0.5) axes[ax_idx].plot(mean_times[idx], mean_freqs[idx], color=consts.COLOR_DATA) # plt.plot(mean_times[i], mean_freqs[i], color="black") axes[ax_idx].set_ylabel("Frequency [Hz]") axes[ax_idx].set_xlim((-0.2, 0.6)) axes[ax_idx].set_title("Contrast {:.2f} ({:} trials)".format(sv, len(time_traces[idx]))) axes[ax_idx].set_xlabel("Time [s]") plt.show() def data_isi_histogram(recalculate=True): # if isis loadable - load name = "isi_cell_data.npy" path = os.path.join(consts.SAVE_FOLDER, name) if os.path.exists(path) and not recalculate: isis = np.load(path) print("loaded") else: # if not get them from the cell cell = "data/invivo/2013-04-17-ac-invivo-1/" # not bursty # cell = "data/invivo/2014-12-03-ad-invivo-1/" # half bursty # cell = "data/invivo/2015-01-20-ad-invivo-1/" # does triple peaks... # cell = "data/invivo/2018-05-08-ae-invivo-1/" # a bit bursty # cell = "data/invivo/2013-04-10-af-invivo-1/" # a bit bursty cell_data = CellData(cell) base = BaselineCellData(cell_data) isis = np.array(base.get_interspike_intervals()) # base.plot_baseline(position=0,time_length=10) # save isis np.save(path, isis) isis = isis * 1000 # plot histogram bins = np.arange(0, 30.1, 0.1) plt.hist(isis, bins=bins, color=consts.COLOR_DATA) plt.xlabel("Inter spike intervals [ms]") plt.ylabel("Count") plt.tight_layout() plt.show() def test_fi_curve_colors(): example_cell_fit = "results/final_2/2012-12-20-ac-invivo-1" cell = EXAMPLE_CELL cell_data = CellData(cell) fit = get_best_fit(example_cell_fit) fig, axes = plt.subplots(1, 3) axes[0].set_title("Cell") fi_curve = FICurveCellData(cell_data, cell_data.get_fi_contrasts(), save_dir=cell_data.get_data_path()) contrasts = cell_data.get_fi_contrasts() f_zeros = fi_curve.get_f_zero_frequencies() f_infs = fi_curve.get_f_inf_frequencies() axes[0].plot(contrasts, f_zeros, ',', marker=consts.f0_marker, color=consts.COLOR_DATA_f0) axes[0].plot(contrasts, f_infs, ',', marker=consts.finf_marker, color=consts.COLOR_DATA_finf) x_values = np.arange(min(contrasts), max(contrasts), (max(contrasts) - min(contrasts)) / 1000) f_inf_fit = fi_curve.f_inf_fit f_zero_fit = fi_curve.f_zero_fit f_zero_fit = [fu.full_boltzmann(x, f_zero_fit[0], f_zero_fit[1], f_zero_fit[2], f_zero_fit[3]) for x in x_values] f_inf_fit = [fu.clipped_line(x, f_inf_fit[0], f_inf_fit[1]) for x in x_values] axes[0].plot(x_values, f_zero_fit, color=consts.COLOR_DATA_f0) axes[0].plot(x_values, f_inf_fit, color=consts.COLOR_DATA_finf) axes[2].plot(x_values, f_zero_fit, color=consts.COLOR_DATA_f0) axes[2].plot(x_values, f_inf_fit, color=consts.COLOR_DATA_finf) axes[1].set_title("Model") model = fit.get_model() fi_curve = FICurveModel(model, contrasts, eod_frequency=cell_data.get_eod_frequency()) f_zeros = fi_curve.get_f_zero_frequencies() f_infs = fi_curve.get_f_inf_frequencies() axes[1].plot(contrasts, f_zeros, ',', marker=consts.f0_marker, color=consts.COLOR_MODEL_f0) axes[1].plot(contrasts, f_infs, ',', marker=consts.finf_marker, color=consts.COLOR_MODEL_finf) x_values = np.arange(min(contrasts), max(contrasts), (max(contrasts) - min(contrasts)) / 1000) f_inf_fit = fi_curve.f_inf_fit f_zero_fit = fi_curve.f_zero_fit f_zero_fit = [fu.full_boltzmann(x, f_zero_fit[0], f_zero_fit[1], f_zero_fit[2], f_zero_fit[3]) for x in x_values] f_inf_fit = [fu.clipped_line(x, f_inf_fit[0], f_inf_fit[1]) for x in x_values] axes[1].plot(x_values, f_zero_fit, color=consts.COLOR_MODEL_f0) axes[1].plot(x_values, f_inf_fit, color=consts.COLOR_MODEL_finf) axes[2].plot(contrasts, f_zeros, ",", marker=consts.f0_marker, color=consts.COLOR_MODEL_f0) axes[2].plot(contrasts, f_infs, ",", marker=consts.finf_marker, color=consts.COLOR_MODEL_finf) plt.show() plt.close() if __name__ == '__main__': main()