P-unit_model/test.py
2020-07-04 11:28:33 +02:00

68 lines
1.7 KiB
Python

from Baseline import get_baseline_class
from CellData import CellData
from models.LIFACnoise import LifacNoiseModel
from Baseline import BaselineCellData, BaselineModel
from os import listdir
from IPython import embed
import pyrelacs.DataLoader as Dl
for meep in Dl.load("invivo_data/2011-10-25-aa-invivo-1/info.dat"):
print(meep)
quit()
def icelldata_of_dir(base_path):
global COUNT
for item in sorted(listdir(base_path)):
item_path = base_path + item
try:
data = CellData(item_path)
yield data
except TypeError as e:
print(str(e))
except IndexError as e:
print(str(e), "\n")
except ValueError as e:
print(str(e), "\n")
print("Currently throw errors: {}".format(COUNT))
for data in icelldata_of_dir("invivo_data/"):
v1 = data.get_base_traces(data.V1)
if len(v1) == 0:
embed()
quit()
quit()
parameter_bursty_model = {'step_size': 5e-05, 'mem_tau': 0.0066693150193490695, 'v_base': 0, 'v_zero': 0,
'threshold': 1, 'v_offset': -45.703125, 'input_scaling': 172.13861987237314,
'delta_a': 0.06148215166012024, 'tau_a': 0.03391674075000068, 'a_zero': 2,
'noise_strength': 0.0684136549210377, 'dend_tau': 0.0013694103932013805,
'refractory_period': 0.001}
eod = 752
model = LifacNoiseModel(parameter_bursty_model)
baseline_model = get_baseline_class(model, 752, trials=2)
baseline_model.get_burstiness()
quit()
for cell_data in icelldata_of_dir("data/"):
baseline = get_baseline_class(cell_data)
baseline.get_burstiness()