from Baseline import get_baseline_class from CellData import CellData from models.LIFACnoise import LifacNoiseModel from Baseline import BaselineCellData, BaselineModel from os import listdir from IPython import embed import pyrelacs.DataLoader as Dl for meep in Dl.load("invivo_data/2011-10-25-aa-invivo-1/info.dat"): print(meep) quit() def icelldata_of_dir(base_path): global COUNT for item in sorted(listdir(base_path)): item_path = base_path + item try: data = CellData(item_path) yield data except TypeError as e: print(str(e)) except IndexError as e: print(str(e), "\n") except ValueError as e: print(str(e), "\n") print("Currently throw errors: {}".format(COUNT)) for data in icelldata_of_dir("invivo_data/"): v1 = data.get_base_traces(data.V1) if len(v1) == 0: embed() quit() quit() parameter_bursty_model = {'step_size': 5e-05, 'mem_tau': 0.0066693150193490695, 'v_base': 0, 'v_zero': 0, 'threshold': 1, 'v_offset': -45.703125, 'input_scaling': 172.13861987237314, 'delta_a': 0.06148215166012024, 'tau_a': 0.03391674075000068, 'a_zero': 2, 'noise_strength': 0.0684136549210377, 'dend_tau': 0.0013694103932013805, 'refractory_period': 0.001} eod = 752 model = LifacNoiseModel(parameter_bursty_model) baseline_model = get_baseline_class(model, 752, trials=2) baseline_model.get_burstiness() quit() for cell_data in icelldata_of_dir("data/"): baseline = get_baseline_class(cell_data) baseline.get_burstiness()