866 lines
35 KiB
Python
866 lines
35 KiB
Python
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.gridspec as gridspec
|
|
import matplotlib as mpl
|
|
from scipy.stats import pearsonr
|
|
import os
|
|
|
|
from analysis import get_filtered_fit_info, get_behaviour_values, get_parameter_values, behaviour_correlations, parameter_correlations
|
|
from fitting.ModelFit import get_best_fit
|
|
from experiments.Baseline import BaselineModel, BaselineCellData
|
|
from experiments.FiCurve import FICurveModel, FICurveCellData
|
|
from parser.CellData import CellData
|
|
from my_util import functions as fu
|
|
from my_util import save_load
|
|
import Figure_constants as consts
|
|
|
|
|
|
parameter_titles = {"input_scaling": r"$\alpha$", "delta_a": r"$\Delta_A$",
|
|
"mem_tau": r"$\tau_m$", "noise_strength": r"$\sqrt{2D}$",
|
|
"refractory_period": "$t_{ref}$", "tau_a": r"$\tau_A$",
|
|
"v_offset": r"$I_{Bias}$", "dend_tau": r"$\tau_{dend}$"}
|
|
|
|
parameter_xlabels = {"input_scaling": "cm", "delta_a": r"$\Delta_A$",
|
|
"mem_tau": r"$\tau_m$", "noise_strength": r"$\sqrt{2D}$",
|
|
"refractory_period": "$t_{ref}$", "tau_a": r"$\tau_A$",
|
|
"v_offset": r"$I_{Bias}$", "dend_tau": r"$\tau_{dend}$"}
|
|
|
|
behaviour_titles = {"baseline_frequency": "Base Rate", "Burstiness": "Burst", "coefficient_of_variation": "CV",
|
|
"serial_correlation": "SC", "vector_strength": "VS",
|
|
"f_inf_slope": r"$f_{\infty}$ Slope", "f_zero_slope": r"$f_0$ Slope",
|
|
"f_zero_middle": r"$f_0$ middle", "eodf": "EODf"}
|
|
|
|
|
|
def main():
|
|
# run_all_images()
|
|
# quit()
|
|
|
|
dir_path = "results/final_2/"
|
|
|
|
# dend_tau_and_ref_effect()
|
|
# quit()
|
|
|
|
fits_info = get_filtered_fit_info(dir_path, filter=True)
|
|
# visualize_tested_correlations(fits_info)
|
|
quit()
|
|
print("Cells left:", len(fits_info))
|
|
cell_behaviour, model_behaviour = get_behaviour_values(fits_info)
|
|
# plot_cell_model_comp_baseline(cell_behaviour, model_behaviour)
|
|
# plot_cell_model_comp_burstiness(cell_behaviour, model_behaviour)
|
|
plot_cell_model_comp_adaption(cell_behaviour, model_behaviour)
|
|
|
|
behaviour_correlations_plot(fits_info)
|
|
parameter_correlation_plot(fits_info)
|
|
#
|
|
# create_parameter_distributions(get_parameter_values(fits_info))
|
|
# create_parameter_distributions(get_parameter_values(fits_info, scaled=True, goal_eodf=800), "scaled_to_800_")
|
|
# errors = calculate_percent_errors(fits_info)
|
|
# create_boxplots(errors)
|
|
|
|
# example_bad_hist_fits(dir_path)
|
|
# example_good_fi_fits(dir_path)
|
|
# example_bad_fi_fits(dir_path)
|
|
|
|
|
|
def run_all_images(dir_path, filter=True, pre_analysis_path="", recalculate=False):
|
|
|
|
|
|
if pre_analysis_path != "":
|
|
fit_info_name = "figures_res_fit_info.npy"
|
|
behaviours_name = "figures_res_behaviour.npy"
|
|
|
|
fit_info_path = os.path.join(pre_analysis_path, fit_info_name)
|
|
if not os.path.exists(fit_info_path) or recalculate:
|
|
fits_info = get_filtered_fit_info(dir_path, filter=filter)
|
|
save_load.save(fits_info, fit_info_path)
|
|
else:
|
|
fits_info = save_load.load(fit_info_path)
|
|
|
|
behaviours_path = os.path.join(pre_analysis_path, behaviours_name)
|
|
if not os.path.exists(behaviours_path) or recalculate:
|
|
cell_behaviour, model_behaviour = get_behaviour_values(fits_info)
|
|
save_load.save([cell_behaviour, model_behaviour], behaviours_path)
|
|
else:
|
|
cell_behaviour, model_behaviour = save_load.load(behaviours_path)
|
|
|
|
else:
|
|
fits_info = get_filtered_fit_info(dir_path, filter=True)
|
|
cell_behaviour, model_behaviour = get_behaviour_values(fits_info)
|
|
|
|
plot_cell_model_comp_baseline(cell_behaviour, model_behaviour)
|
|
plot_cell_model_comp_adaption(cell_behaviour, model_behaviour)
|
|
plot_cell_model_comp_burstiness(cell_behaviour, model_behaviour)
|
|
|
|
behaviour_correlations_plot(fits_info)
|
|
parameter_correlation_plot(fits_info)
|
|
|
|
create_parameter_distributions(get_parameter_values(fits_info))
|
|
create_parameter_distributions(get_parameter_values(fits_info, scaled=True, goal_eodf=800), "scaled_to_800_")
|
|
|
|
# Plots using example cells:
|
|
|
|
# dend_tau_and_ref_effect()
|
|
# example_good_hist_fits(dir_path)
|
|
# example_bad_hist_fits(dir_path)
|
|
# example_good_fi_fits(dir_path)
|
|
# example_bad_fi_fits(dir_path)
|
|
|
|
|
|
def visualize_tested_correlations(fits_info):
|
|
|
|
for leave_out in range(1, 11, 1):
|
|
significance_count, total_count, labels = test_correlations(fits_info, leave_out, model_values=False)
|
|
percentages = significance_count / total_count
|
|
border = total_count * 0.01
|
|
fig = plt.figure(tight_layout=True, figsize=consts.FIG_SIZE_MEDIUM_WIDE)
|
|
gs = gridspec.GridSpec(2, 2, width_ratios=(1, 1), height_ratios=(5, 0.5), hspace=0.5, wspace=0.4, left=0.2)
|
|
|
|
ax = fig.add_subplot(gs[0, 0])
|
|
# We want to show all ticks...
|
|
|
|
ax.imshow(percentages)
|
|
ax.set_xticks(np.arange(len(labels)))
|
|
ax.set_xticklabels([behaviour_titles[l] for l in labels])
|
|
# remove frame:
|
|
ax.spines['top'].set_visible(False)
|
|
ax.spines['right'].set_visible(False)
|
|
# ... and label them with the respective list entries
|
|
ax.set_yticks(np.arange(len(labels)))
|
|
ax.set_yticklabels([behaviour_titles[l] for l in labels])
|
|
|
|
ax.set_title("Percent: removed {}".format(leave_out))
|
|
|
|
# Rotate the tick labels and set their alignment.
|
|
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
|
|
rotation_mode="anchor")
|
|
|
|
# Loop over data dimensions and create text annotations.
|
|
for i in range(len(labels)):
|
|
for j in range(len(labels)):
|
|
if percentages[i, j] > 0.5:
|
|
text = ax.text(j, i, "{:.2f}".format(percentages[i, j]), ha="center", va="center",
|
|
color="black", size=6)
|
|
else:
|
|
text = ax.text(j, i, "{:.2f}".format(percentages[i, j]), ha="center", va="center",
|
|
color="white", size=6)
|
|
|
|
ax = fig.add_subplot(gs[0, 1])
|
|
ax.imshow(percentages)
|
|
ax.set_xticks(np.arange(len(labels)))
|
|
ax.set_xticklabels([behaviour_titles[l] for l in labels])
|
|
# remove frame:
|
|
ax.spines['top'].set_visible(False)
|
|
ax.spines['right'].set_visible(False)
|
|
# ... and label them with the respective list entries
|
|
ax.set_yticks(np.arange(len(labels)))
|
|
ax.set_yticklabels([behaviour_titles[l] for l in labels])
|
|
|
|
ax.set_title("Counts - removed {}".format(leave_out))
|
|
|
|
# Rotate the tick labels and set their alignment.
|
|
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
|
|
rotation_mode="anchor")
|
|
|
|
# Loop over data dimensions and create text annotations.
|
|
for i in range(len(labels)):
|
|
for j in range(len(labels)):
|
|
if percentages[i, j] > 0.5:
|
|
text = ax.text(j, i, "{:.0f}".format(significance_count[i, j]), ha="center", va="center",
|
|
color="black", size=6)
|
|
else:
|
|
text = ax.text(j, i, "{:.0f}".format(significance_count[i, j]), ha="center", va="center",
|
|
color="white", size=6)
|
|
|
|
|
|
ax_col = fig.add_subplot(gs[1, :])
|
|
data = [np.arange(0, 1.001, 0.01)] * 10
|
|
ax_col.set_xticks([0, 25, 50, 75, 100])
|
|
ax_col.set_xticklabels([0, 0.25, 0.5, 0.75, 1])
|
|
ax_col.set_yticks([])
|
|
ax_col.imshow(data)
|
|
ax_col.set_xlabel("Correlation Coefficients")
|
|
|
|
|
|
plt.tight_layout()
|
|
plt.savefig("figures/consistency_correlations_removed_{}.pdf".format(leave_out))
|
|
|
|
|
|
def test_correlations(fits_info, left_out, model_values=False):
|
|
bv_cell, bv_model = get_behaviour_values(fits_info)
|
|
# eod_frequencies = [fits_info[cell][3] for cell in sorted(fits_info.keys())]
|
|
if model_values:
|
|
behaviour_values = bv_model
|
|
else:
|
|
behaviour_values = bv_cell
|
|
|
|
labels = ["baseline_frequency", "serial_correlation", "vector_strength", "coefficient_of_variation",
|
|
"Burstiness", "f_inf_slope", "f_zero_slope"] # , "eodf"]
|
|
significance_counts = np.zeros((len(labels), len(labels)))
|
|
correction_factor = sum(range(len(labels)))
|
|
total_count = 0
|
|
for mask in iall_masks(len(behaviour_values["f_inf_slope"]), left_out):
|
|
total_count += 1
|
|
idx = np.ones(len(behaviour_values["f_inf_slope"]), dtype=np.int32)
|
|
for masked in mask:
|
|
idx[masked] = 0
|
|
for i in range(len(labels)):
|
|
for j in range(len(labels)):
|
|
if j > i:
|
|
continue
|
|
idx = np.array(idx, dtype=np.bool)
|
|
values_i = np.array(behaviour_values[labels[i]])[idx]
|
|
values_j = np.array(behaviour_values[labels[j]])[idx]
|
|
c, p = pearsonr(values_i, values_j)
|
|
if p*correction_factor < 0.05:
|
|
significance_counts[i, j] += 1
|
|
|
|
return significance_counts, total_count, labels
|
|
|
|
|
|
def iall_masks(values_count: int, left_out: int):
|
|
mask = np.array(range(left_out))
|
|
|
|
while True:
|
|
if mask[0] == values_count - left_out + 1:
|
|
break
|
|
yield mask
|
|
|
|
mask[-1] += 1
|
|
|
|
if mask[-1] >= values_count:
|
|
idx_to_start = 0
|
|
for i in range(left_out-1):
|
|
if mask[-1 - i] >= values_count-i:
|
|
mask[-1 - (i+1)] += 1
|
|
idx_to_start -= 1
|
|
else:
|
|
break
|
|
while idx_to_start < 0:
|
|
# print("i:", idx_to_start, "mask:", mask)
|
|
mask[idx_to_start] = mask[idx_to_start -1] + 1
|
|
idx_to_start += 1
|
|
# print("i:", idx_to_start, "mask:", mask, "end")
|
|
|
|
|
|
def dend_tau_and_ref_effect():
|
|
cells = ["2012-12-21-am-invivo-1", "2014-03-19-ad-invivo-1", "2014-03-25-aa-invivo-1"]
|
|
cell_type = ["no burster", "burster", "strong burster"]
|
|
folders = ["results/ref_and_tau/no_dend_tau/", "results/ref_and_tau/no_ref_period/", "results/final_2/"]
|
|
title = [r"without $\tau_{dend}$", r"without $t_{ref}$", "with both"]
|
|
|
|
fig, axes = plt.subplots(len(cells), 3, figsize=consts.FIG_SIZE_LARGE, sharey="row", sharex="all")
|
|
|
|
for i, cell in enumerate(cells):
|
|
cell_data = CellData("data/final/" + cell)
|
|
cell_baseline = BaselineCellData(cell_data)
|
|
cell_baseline.load_values(cell_data.get_data_path())
|
|
eodf = cell_data.get_eod_frequency()
|
|
print(cell)
|
|
print("EODf:", eodf)
|
|
print("base rate:", cell_baseline.get_baseline_frequency())
|
|
print("bursty:", cell_baseline.get_burstiness())
|
|
print()
|
|
for j, folder in enumerate(folders):
|
|
fit = get_best_fit(folder + cell)
|
|
model_baseline = BaselineModel(fit.get_model(), eodf)
|
|
cell_isis = cell_baseline.get_interspike_intervals() * eodf
|
|
model_isis = model_baseline.get_interspike_intervals() * eodf
|
|
bins = np.arange(0, 0.025, 0.0001) * eodf
|
|
if i == 0 and j == 2:
|
|
axes[i, j].hist(model_isis, density=True, bins=bins, color=consts.COLOR_MODEL, alpha=0.75,
|
|
label="model")
|
|
axes[i, j].hist(cell_isis, density=True, bins=bins, color=consts.COLOR_DATA, alpha=0.5, label="data")
|
|
axes[i, j].legend(loc="upper right", frameon=False)
|
|
else:
|
|
axes[i, j].hist(model_isis, density=True, bins=bins, color=consts.COLOR_MODEL, alpha=0.75)
|
|
axes[i, j].hist(cell_isis, density=True, bins=bins, color=consts.COLOR_DATA, alpha=0.5)
|
|
|
|
if j == 0:
|
|
axes[i, j].set_ylabel(cell_type[i])
|
|
axes[i, j].set_yticklabels([])
|
|
if i == 0:
|
|
axes[0, j].set_title(title[j])
|
|
|
|
plt.xlim(0, 17.5)
|
|
fig.text(0.5, 0.04, 'Time [EOD periods]', ha='center', va='center') # shared x label
|
|
fig.text(0.06, 0.5, 'ISI Density', ha='center', va='center', rotation='vertical') # shared y label
|
|
|
|
fig.text(0.11, 0.9, 'A', ha='center', va='center', rotation='horizontal', size=16, family='serif')
|
|
fig.text(0.3825, 0.9, 'B', ha='center', va='center', rotation='horizontal', size=16, family='serif')
|
|
fig.text(0.655, 0.9, 'C', ha='center', va='center', rotation='horizontal', size=16, family='serif')
|
|
# fig.text(0.11, 0.86, '1', ha='center', va='center', rotation='horizontal', size=16, family='serif')
|
|
# fig.text(0.11, 0.59, '2', ha='center', va='center', rotation='horizontal', size=16, family='serif')
|
|
# fig.text(0.11, 0.32, '3', ha='center', va='center', rotation='horizontal', size=16, family='serif')
|
|
|
|
plt.savefig(consts.SAVE_FOLDER + "dend_ref_effect.pdf", transparent=True)
|
|
plt.close()
|
|
|
|
|
|
def create_parameter_distributions(par_values, prefix=""):
|
|
fig, axes = plt.subplots(4, 2, gridspec_kw={"left": 0.1, "hspace": 0.5}, figsize=consts.FIG_SIZE_LARGE_HIGH)
|
|
|
|
if len(par_values.keys()) != 8:
|
|
print("not eight parameters")
|
|
|
|
labels = ["input_scaling", "v_offset", "mem_tau", "noise_strength",
|
|
"tau_a", "delta_a", "dend_tau", "refractory_period"]
|
|
x_labels = ["[cm]", "[mV]", "[ms]", r"[mV$\sqrt{s}$]", "[ms]", "[mVms]", "[ms]", "[ms]"]
|
|
axes_flat = axes.flatten()
|
|
for i, l in enumerate(labels):
|
|
bins = calculate_bins(par_values[l], 20)
|
|
if "ms" in x_labels[i]:
|
|
bins *= 1000
|
|
par_values[l] = np.array(par_values[l]) * 1000
|
|
axes_flat[i].hist(par_values[l], bins=bins, color=consts.COLOR_MODEL, alpha=0.75)
|
|
# axes_flat[i].set_title(parameter_titles[l])
|
|
axes_flat[i].set_xlabel(parameter_titles[l] + " " + x_labels[i])
|
|
fig.text(0.03, 0.5, 'Count', ha='center', va='center', rotation='vertical', size=12) # shared y label
|
|
plt.tight_layout()
|
|
|
|
consts.set_figure_labels(xoffset=-2.5, yoffset=1.5)
|
|
# fig.label_axes()
|
|
|
|
plt.savefig(consts.SAVE_FOLDER + prefix + "parameter_distributions.pdf")
|
|
plt.close()
|
|
|
|
|
|
def behaviour_correlations_plot(fits_info):
|
|
fig = plt.figure(tight_layout=True, figsize=consts.FIG_SIZE_MEDIUM_WIDE)
|
|
gs = gridspec.GridSpec(2, 2, width_ratios=(1, 1), height_ratios=(5, 0.5), hspace=0.5, wspace=0.15, left=0.2)
|
|
# fig, axes = plt.subplots(1, 2, figsize=consts.FIG_SIZE_MEDIUM_WIDE)
|
|
|
|
keys, corr_values, corrected_p_values = behaviour_correlations(fits_info, model_values=False)
|
|
labels = [behaviour_titles[k] for k in keys]
|
|
img = create_correlation_plot(fig.add_subplot(gs[0, 0]), labels, corr_values, corrected_p_values, "Data")
|
|
|
|
keys, corr_values, corrected_p_values = behaviour_correlations(fits_info, model_values=True)
|
|
labels = [behaviour_titles[k] for k in keys]
|
|
ax = fig.add_subplot(gs[0, 1])
|
|
img = create_correlation_plot(ax, labels, corr_values, corrected_p_values, "Model", y_label=False)
|
|
# cbar = ax.figure.colorbar(im, ax=ax, **cbar_kw)
|
|
ax_col = fig.add_subplot(gs[1, :])
|
|
data = [np.arange(-1, 1.001, 0.01)] * 10
|
|
ax_col.set_xticks([0, 25, 50, 75, 100, 125, 150, 175, 200])
|
|
ax_col.set_xticklabels([-1, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75, 1])
|
|
ax_col.set_yticks([])
|
|
ax_col.imshow(data)
|
|
ax_col.set_xlabel("Correlation Coefficients")
|
|
plt.tight_layout()
|
|
plt.savefig(consts.SAVE_FOLDER + "behaviour_correlations.pdf")
|
|
plt.close()
|
|
|
|
|
|
def parameter_correlation_plot(fits_info):
|
|
labels, corr_values, corrected_p_values = parameter_correlations(fits_info)
|
|
par_labels = [parameter_titles[l] for l in labels]
|
|
fig, ax = plt.subplots(1, 1, figsize=consts.FIG_SIZE_MEDIUM)
|
|
# ax, labels, correlations, p_values, title, y_label=True
|
|
im = create_correlation_plot(ax, par_labels, corr_values, corrected_p_values, "")
|
|
fig.colorbar(im, ax=ax)
|
|
plt.savefig(consts.SAVE_FOLDER + "parameter_correlations.pdf")
|
|
plt.close()
|
|
|
|
|
|
def create_correlation_plot(ax, labels, correlations, p_values, title, y_label=True):
|
|
cleaned_cors = np.zeros(correlations.shape)
|
|
|
|
for i in range(correlations.shape[0]):
|
|
for j in range(correlations.shape[1]):
|
|
if abs(p_values[i, j]) < 0.05:
|
|
cleaned_cors[i, j] = correlations[i, j]
|
|
else:
|
|
cleaned_cors[i, j] = np.NAN
|
|
|
|
if j > i:
|
|
cleaned_cors[i, j] = np.NAN
|
|
im = ax.imshow(cleaned_cors, vmin=-1, vmax=1)
|
|
|
|
# We want to show all ticks...
|
|
ax.set_xticks(np.arange(len(labels)))
|
|
ax.set_xticklabels(labels)
|
|
# remove frame:
|
|
ax.spines['top'].set_visible(False)
|
|
ax.spines['right'].set_visible(False)
|
|
# ... and label them with the respective list entries
|
|
if y_label:
|
|
ax.set_yticks(np.arange(len(labels)))
|
|
ax.set_yticklabels(labels)
|
|
else:
|
|
ax.set_yticklabels([])
|
|
ax.set_title(title)
|
|
|
|
# Rotate the tick labels and set their alignment.
|
|
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
|
|
rotation_mode="anchor")
|
|
|
|
# Loop over data dimensions and create text annotations.
|
|
for i in range(len(labels)):
|
|
for j in range(len(labels)):
|
|
if not np.isnan(cleaned_cors[i, j]):
|
|
if cleaned_cors[i, j] > 0:
|
|
text = ax.text(j, i, "{:.2f}".format(cleaned_cors[i, j]), ha="center", va="center", color="black", size=6)
|
|
else:
|
|
text = ax.text(j, i, "{:.2f}".format(cleaned_cors[i, j]), ha="center", va="center", color="white", size=6)
|
|
# if p_values[i][j] < 0.0001:
|
|
# text = ax.text(j, i, "***", ha="center", va="center", color="b")
|
|
# elif p_values[i][j] < 0.001:
|
|
# text = ax.text(j, i, "**", ha="center", va="center", color="b")
|
|
# elif p_values[i][j] < 0.05:
|
|
# text = ax.text(j, i, "*", ha="center", va="center", color="b")
|
|
|
|
return im
|
|
|
|
|
|
def example_good_hist_fits(dir_path):
|
|
strong_bursty_cell = "2018-05-08-ac-invivo-1"
|
|
bursty_cell = "2014-03-19-ad-invivo-1"
|
|
non_bursty_cell = "2012-12-21-am-invivo-1"
|
|
|
|
fig, axes = plt.subplots(1, 3, sharex="all", figsize=(8, 4))
|
|
|
|
for i, cell in enumerate([non_bursty_cell, bursty_cell, strong_bursty_cell]):
|
|
fit_dir = dir_path + cell + "/"
|
|
fit = get_best_fit(fit_dir)
|
|
|
|
cell_data = fit.get_cell_data()
|
|
eodf = cell_data.get_eod_frequency()
|
|
|
|
model = fit.get_model()
|
|
baseline_model = BaselineModel(model, eodf, trials=5)
|
|
|
|
model_isi = np.array(baseline_model.get_interspike_intervals()) * eodf
|
|
cell_isi = BaselineCellData(cell_data).get_interspike_intervals() * eodf
|
|
|
|
bins = np.arange(0, 0.025, 0.0001) * eodf
|
|
axes[i].hist(model_isi, bins=bins, density=True, alpha=0.75, color=consts.COLOR_MODEL)
|
|
axes[i].hist(cell_isi, bins=bins, density=True, alpha=0.5, color=consts.COLOR_DATA)
|
|
axes[i].set_xlabel("ISI in EOD periods")
|
|
axes[0].set_ylabel("Density")
|
|
plt.tight_layout()
|
|
consts.set_figure_labels(xoffset=-2.5)
|
|
fig.label_axes()
|
|
|
|
plt.savefig(consts.SAVE_FOLDER + "example_good_isi_hist_fits.pdf", transparent=True)
|
|
plt.close()
|
|
|
|
|
|
def example_bad_hist_fits(dir_path):
|
|
bursty_cell = "2014-06-06-ag-invivo-1"
|
|
strong_bursty_cell = "2018-05-08-ab-invivo-1"
|
|
extra_structure_cell = "2014-12-11-ad-invivo-1"
|
|
|
|
fig, axes = plt.subplots(1, 3, sharex="all", figsize=consts.FIG_SIZE_SMALL_EXTRA_WIDE) # , gridspec_kw={"top": 0.95})
|
|
|
|
for i, cell in enumerate([bursty_cell, strong_bursty_cell, extra_structure_cell]):
|
|
|
|
|
|
fit_dir = dir_path + cell + "/"
|
|
fit = get_best_fit(fit_dir)
|
|
|
|
cell_data = fit.get_cell_data()
|
|
eodf = cell_data.get_eod_frequency()
|
|
|
|
model = fit.get_model()
|
|
baseline_model = BaselineModel(model, eodf, trials=5)
|
|
cell_baseline = BaselineCellData(cell_data)
|
|
|
|
print(cell)
|
|
print("EODf:", eodf)
|
|
print("base rate:", cell_baseline.get_baseline_frequency())
|
|
print("bursty:", cell_baseline.get_burstiness())
|
|
print()
|
|
|
|
model_isi = np.array(baseline_model.get_interspike_intervals()) * eodf
|
|
cell_isi = cell_baseline.get_interspike_intervals() * eodf
|
|
|
|
bins = np.arange(0, 0.025, 0.0001) * eodf
|
|
if i == 0:
|
|
axes[i].hist(model_isi, bins=bins, density=True, alpha=0.75, color=consts.COLOR_MODEL, label="model")
|
|
axes[i].hist(cell_isi, bins=bins, density=True, alpha=0.5, color=consts.COLOR_DATA, label="data")
|
|
axes[i].legend(loc="upper right", frameon=False)
|
|
else:
|
|
axes[i].hist(model_isi, bins=bins, density=True, alpha=0.75, color=consts.COLOR_MODEL)
|
|
axes[i].hist(cell_isi, bins=bins, density=True, alpha=0.5, color=consts.COLOR_DATA)
|
|
|
|
axes[i].set_xlabel("ISI [EOD periods]")
|
|
axes[0].set_ylabel("Density")
|
|
plt.tight_layout()
|
|
consts.set_figure_labels(xoffset=-2.5, yoffset=1.25)
|
|
fig.label_axes()
|
|
|
|
plt.savefig(consts.SAVE_FOLDER + "example_bad_isi_hist_fits.pdf", transparent=True)
|
|
plt.close()
|
|
|
|
|
|
def example_good_fi_fits(dir_path):
|
|
|
|
fig, axes = plt.subplots(1, 3, figsize=consts.FIG_SIZE_SMALL_EXTRA_WIDE, sharey="all")
|
|
for i, cell in enumerate(["2012-12-21-am-invivo-1", "2014-03-19-ae-invivo-1", "2014-03-25-aa-invivo-1" ]):
|
|
fit_dir = dir_path + cell + "/"
|
|
fit = get_best_fit(fit_dir)
|
|
|
|
cell_data = fit.get_cell_data()
|
|
eodf = cell_data.get_eod_frequency()
|
|
|
|
cell_baseline = BaselineCellData(cell_data)
|
|
|
|
print(cell)
|
|
print("EODf:", eodf)
|
|
print("base rate:", cell_baseline.get_baseline_frequency())
|
|
print("bursty:", cell_baseline.get_burstiness())
|
|
print()
|
|
|
|
|
|
model = fit.get_model()
|
|
contrasts = cell_data.get_fi_contrasts()
|
|
fi_curve_data = FICurveCellData(cell_data, contrasts, save_dir=cell_data.get_data_path())
|
|
contrasts = fi_curve_data.stimulus_values
|
|
x_values = np.arange(min(contrasts), max(contrasts), 0.001)
|
|
fi_curve_model = FICurveModel(model, contrasts, eodf, trials=10)
|
|
|
|
f_zero_fit = fi_curve_data.f_zero_fit
|
|
f_inf_fit = fi_curve_data.f_inf_fit
|
|
|
|
# f zero response
|
|
axes[i].plot(contrasts, fi_curve_data.get_f_zero_frequencies(), ',',
|
|
marker=consts.f0_marker, alpha=0.75, color=consts.COLOR_DATA_f0, label=r"data $f_0$")
|
|
axes[i].plot(x_values, fu.full_boltzmann(x_values, f_zero_fit[0], f_zero_fit[1], f_zero_fit[2], f_zero_fit[3]),
|
|
color=consts.COLOR_DATA_f0, alpha=0.75)
|
|
axes[i].plot(contrasts, fi_curve_model.get_f_zero_frequencies(), ',',
|
|
marker=consts.f0_marker, alpha=0.75, color=consts.COLOR_MODEL_f0, label=r"model $f_0$")
|
|
|
|
# f inf response
|
|
axes[i].plot(contrasts, fi_curve_data.get_f_inf_frequencies(), ',',
|
|
marker=consts.finf_marker, alpha=0.5, color=consts.COLOR_DATA_finf, label=r"data $f_{\infty}$")
|
|
axes[i].plot(x_values, fu.clipped_line(x_values, f_inf_fit[0], f_inf_fit[1]),
|
|
color=consts.COLOR_DATA_finf, alpha=0.5)
|
|
axes[i].plot(contrasts, fi_curve_model.get_f_inf_frequencies(), ',',
|
|
marker=consts.finf_marker, alpha=0.75, color=consts.COLOR_MODEL_finf, label=r"model $f_{\infty}$")
|
|
|
|
axes[i].set_xlabel("Contrast")
|
|
axes[i].set_xlim((-0.22, 0.22))
|
|
|
|
axes[0].legend(loc="upper left", frameon=False)
|
|
axes[0].set_ylabel("Frequency [Hz]")
|
|
plt.tight_layout()
|
|
consts.set_figure_labels(xoffset=-2.5)
|
|
fig.label_axes()
|
|
|
|
plt.savefig(consts.SAVE_FOLDER + "example_good_fi_fits.pdf", transparent=True)
|
|
plt.close()
|
|
|
|
|
|
def example_bad_fi_fits(dir_path):
|
|
fig, axes = plt.subplots(1, 2, figsize=consts.FIG_SIZE_SMALL_EXTRA_WIDE)
|
|
# "2013-01-08-aa-invivo-1" candidate cell
|
|
for i, cell in enumerate(["2012-12-13-ao-invivo-1", "2014-01-23-ab-invivo-1"]):
|
|
fit_dir = dir_path + cell + "/"
|
|
fit = get_best_fit(fit_dir)
|
|
|
|
cell_data = fit.get_cell_data()
|
|
eodf = cell_data.get_eod_frequency()
|
|
|
|
cell_baseline = BaselineCellData(cell_data)
|
|
|
|
print(cell)
|
|
print("EODf:", eodf)
|
|
print("base rate:", cell_baseline.get_baseline_frequency())
|
|
print("bursty:", cell_baseline.get_burstiness())
|
|
print()
|
|
|
|
model = fit.get_model()
|
|
contrasts = cell_data.get_fi_contrasts()
|
|
fi_curve_data = FICurveCellData(cell_data, contrasts, save_dir=cell_data.get_data_path())
|
|
contrasts = fi_curve_data.stimulus_values
|
|
x_values = np.arange(min(contrasts), max(contrasts), 0.001)
|
|
fi_curve_model = FICurveModel(model, contrasts, eodf, trials=10)
|
|
|
|
f_zero_fit = fi_curve_data.f_zero_fit
|
|
f_inf_fit = fi_curve_data.f_inf_fit
|
|
|
|
# f zero response
|
|
axes[i].plot(contrasts, fi_curve_data.get_f_zero_frequencies(), ',',
|
|
marker=consts.f0_marker, alpha=0.75, color=consts.COLOR_DATA_f0, label=r"data $f_0$")
|
|
axes[i].plot(x_values, fu.full_boltzmann(x_values, f_zero_fit[0], f_zero_fit[1], f_zero_fit[2], f_zero_fit[3]),
|
|
color=consts.COLOR_DATA_f0, alpha=0.75)
|
|
axes[i].plot(contrasts, fi_curve_model.get_f_zero_frequencies(), ',',
|
|
marker=consts.f0_marker, alpha=0.75, color=consts.COLOR_MODEL_f0, label=r"model $f_0$")
|
|
|
|
# f inf response
|
|
axes[i].plot(contrasts, fi_curve_data.get_f_inf_frequencies(), ',',
|
|
marker=consts.finf_marker, alpha=0.5, color=consts.COLOR_DATA_finf, label=r"data $f_{\infty}$")
|
|
axes[i].plot(x_values, fu.clipped_line(x_values, f_inf_fit[0], f_inf_fit[1]),
|
|
color=consts.COLOR_DATA_finf, alpha=0.5)
|
|
axes[i].plot(contrasts, fi_curve_model.get_f_inf_frequencies(), ',',
|
|
marker=consts.finf_marker, alpha=0.75, color=consts.COLOR_MODEL_finf, label=r"model $f_{\infty}$")
|
|
|
|
axes[i].set_xlabel("Contrast")
|
|
axes[i].set_xlim((-0.22, 0.2))
|
|
|
|
axes[0].set_ylabel("Frequency [Hz]")
|
|
axes[0].legend(loc="upper left", frameon=False)
|
|
plt.tight_layout()
|
|
consts.set_figure_labels(xoffset=-2.5)
|
|
fig.label_axes()
|
|
|
|
plt.savefig(consts.SAVE_FOLDER + "example_bad_fi_fits.pdf", transparent=True)
|
|
plt.close()
|
|
|
|
|
|
def create_boxplots(errors):
|
|
labels = ["{}_n:{}".format(k, len(errors[k])) for k in sorted(errors.keys())]
|
|
for k in sorted(errors.keys()):
|
|
print("{}: median %-error: {:.2f}".format(k, np.median(errors[k])))
|
|
y_values = [errors[k] for k in sorted(errors.keys())]
|
|
|
|
plt.boxplot(y_values)
|
|
plt.xticks(np.arange(1, len(y_values)+1, 1), labels, rotation=45)
|
|
plt.tight_layout()
|
|
plt.show()
|
|
plt.close()
|
|
|
|
|
|
def plot_cell_model_comp_baseline(cell_behavior, model_behaviour):
|
|
fig = plt.figure(figsize=(8, 4))
|
|
gs = fig.add_gridspec(2, 3, width_ratios=[5, 5, 5], height_ratios=[3, 7],
|
|
left=0.1, right=0.95, bottom=0.1, top=0.9,
|
|
wspace=0.4, hspace=0.2)
|
|
num_of_bins = 20
|
|
cmap = 'jet'
|
|
cell_bursting = cell_behavior["Burstiness"]
|
|
# baseline freq plot:
|
|
i = 0
|
|
cell = cell_behavior["baseline_frequency"]
|
|
model = model_behaviour["baseline_frequency"]
|
|
minimum = min(min(cell), min(model))
|
|
maximum = max(max(cell), max(model))
|
|
step = (maximum - minimum) / num_of_bins
|
|
bins = np.arange(minimum, maximum + step, step)
|
|
|
|
ax = fig.add_subplot(gs[1, i])
|
|
ax_histx = fig.add_subplot(gs[0, i], sharex=ax)
|
|
scatter_hist(cell, model, ax, ax_histx, behaviour_titles["baseline_frequency"], bins) # , cmap, cell_bursting)
|
|
ax.set_xlabel(r"Cell [Hz]")
|
|
ax.set_ylabel(r"Model [Hz]")
|
|
ax_histx.set_ylabel("Count")
|
|
i += 1
|
|
|
|
cell = cell_behavior["vector_strength"]
|
|
model = model_behaviour["vector_strength"]
|
|
minimum = min(min(cell), min(model))
|
|
maximum = max(max(cell), max(model))
|
|
step = (maximum - minimum) / num_of_bins
|
|
bins = np.arange(minimum, maximum + step, step)
|
|
|
|
ax = fig.add_subplot(gs[1, i])
|
|
ax_histx = fig.add_subplot(gs[0, i], sharex=ax)
|
|
print("Cells in cell_model_comp_baseline:", len(cell))
|
|
scatter_hist(cell, model, ax, ax_histx, behaviour_titles["vector_strength"], bins) # , cmap, cell_bursting)
|
|
ax.set_xlabel(r"Cell")
|
|
ax.set_ylabel(r"Model")
|
|
ax_histx.set_ylabel("Count")
|
|
i += 1
|
|
|
|
cell = cell_behavior["serial_correlation"]
|
|
model = model_behaviour["serial_correlation"]
|
|
minimum = min(min(cell), min(model))
|
|
maximum = max(max(cell), max(model))
|
|
step = (maximum - minimum) / num_of_bins
|
|
bins = np.arange(minimum, maximum + step, step)
|
|
|
|
ax = fig.add_subplot(gs[1, i])
|
|
ax_histx = fig.add_subplot(gs[0, i], sharex=ax)
|
|
scatter_hist(cell, model, ax, ax_histx, behaviour_titles["serial_correlation"], bins) # , cmap, cell_bursting)
|
|
ax.set_xlabel(r"Cell")
|
|
ax.set_ylabel(r"Model")
|
|
fig.text(0.09, 0.925, 'A', ha='center', va='center', rotation='horizontal', size=16, family='serif')
|
|
fig.text(0.375, 0.925, 'B', ha='center', va='center', rotation='horizontal', size=16, family='serif')
|
|
fig.text(0.6625, 0.925, 'C', ha='center', va='center', rotation='horizontal', size=16, family='serif')
|
|
ax_histx.set_ylabel("Count")
|
|
i += 1
|
|
|
|
plt.tight_layout()
|
|
plt.savefig(consts.SAVE_FOLDER + "fit_baseline_comparison.pdf", transparent=True)
|
|
plt.close()
|
|
|
|
|
|
def plot_cell_model_comp_burstiness(cell_behavior, model_behaviour):
|
|
fig = plt.figure(figsize=consts.FIG_SIZE_MEDIUM_WIDE)
|
|
|
|
# ("Burstiness", "coefficient_of_variation")
|
|
# Add a gridspec with two rows and two columns and a ratio of 2 to 7 between
|
|
# the size of the marginal axes and the main axes in both directions.
|
|
# Also adjust the subplot parameters for a square plot.
|
|
gs = fig.add_gridspec(2, 2, width_ratios=[5, 5], height_ratios=[3, 7],
|
|
left=0.1, right=0.9, bottom=0.1, top=0.9,
|
|
wspace=0.3, hspace=0.2)
|
|
num_of_bins = 20
|
|
# baseline freq plot:
|
|
i = 0
|
|
cmap = 'jet'
|
|
cell = cell_behavior["Burstiness"]
|
|
cell_bursting = cell
|
|
model = model_behaviour["Burstiness"]
|
|
minimum = min(min(cell), min(model))
|
|
maximum = max(max(cell), max(model))
|
|
step = (maximum - minimum) / num_of_bins
|
|
bins = np.arange(minimum, maximum + step, step)
|
|
|
|
ax = fig.add_subplot(gs[1, i])
|
|
ax.set_xlabel("Cell [%ms]")
|
|
ax.set_ylabel("Model [%ms]")
|
|
ax_histx = fig.add_subplot(gs[0, i], sharex=ax)
|
|
ax_histx.set_ylabel("Count")
|
|
scatter_hist(cell, model, ax, ax_histx, behaviour_titles["Burstiness"], bins, cmap, cell_bursting)
|
|
i += 1
|
|
|
|
cell = cell_behavior["coefficient_of_variation"]
|
|
model = model_behaviour["coefficient_of_variation"]
|
|
|
|
minimum = min(min(cell), min(model))
|
|
maximum = max(max(cell), max(model))
|
|
step = (maximum - minimum) / num_of_bins
|
|
bins = np.arange(minimum, maximum + step, step)
|
|
|
|
ax = fig.add_subplot(gs[1, i])
|
|
ax_histx = fig.add_subplot(gs[0, i], sharex=ax)
|
|
scatter_hist(cell, model, ax, ax_histx, behaviour_titles["coefficient_of_variation"], bins, cmap, cell_bursting)
|
|
|
|
ax.set_xlabel("Cell")
|
|
ax.set_ylabel("Model")
|
|
ax_histx.set_ylabel("Count")
|
|
|
|
plt.tight_layout()
|
|
|
|
fig.text(0.085, 0.925, 'A', ha='center', va='center', rotation='horizontal', size=16, family='serif')
|
|
fig.text(0.53, 0.925, 'B', ha='center', va='center', rotation='horizontal', size=16, family='serif')
|
|
|
|
plt.savefig(consts.SAVE_FOLDER + "fit_burstiness_comparison.pdf", transparent=True)
|
|
plt.close()
|
|
|
|
|
|
def plot_cell_model_comp_adaption(cell_behavior, model_behaviour):
|
|
fig = plt.figure(figsize=(8, 4))
|
|
gs = fig.add_gridspec(2, 3, width_ratios=[5, 5, 5], height_ratios=[3, 7],
|
|
left=0.1, right=0.95, bottom=0.1, top=0.9,
|
|
wspace=0.4, hspace=0.3)
|
|
# ("f_inf_slope", "f_zero_slope")
|
|
# Add a gridspec with two rows and two columns and a ratio of 2 to 7 between
|
|
# the size of the marginal axes and the main axes in both directions.
|
|
# Also adjust the subplot parameters for a square plot.
|
|
mpl.rc("axes.formatter", limits=(-5, 3))
|
|
num_of_bins = 20
|
|
|
|
# baseline freq plot:
|
|
i = 0
|
|
cell = cell_behavior["f_inf_slope"]
|
|
model = model_behaviour["f_inf_slope"]
|
|
minimum = min(min(cell), min(model))
|
|
maximum = max(max(cell), max(model))
|
|
step = (maximum - minimum) / num_of_bins
|
|
bins = np.arange(minimum, maximum + step, step)
|
|
|
|
ax = fig.add_subplot(gs[1, i])
|
|
ax_histx = fig.add_subplot(gs[0, i], sharex=ax)
|
|
|
|
scatter_hist(cell, model, ax, ax_histx, behaviour_titles["f_inf_slope"], bins)
|
|
ax.set_xlabel(r"Cell [Hz]")
|
|
ax.set_ylabel(r"Model [Hz]")
|
|
ax_histx.set_ylabel("Count")
|
|
i += 1
|
|
|
|
cell = cell_behavior["f_zero_slope"]
|
|
model = model_behaviour["f_zero_slope"]
|
|
length_before = len(cell)
|
|
idx = np.array(cell) < 25000
|
|
cell = np.array(cell)[idx]
|
|
model = np.array(model)[idx]
|
|
|
|
idx = np.array(model) < 25000
|
|
cell = np.array(cell)[idx]
|
|
model = np.array(model)[idx]
|
|
|
|
print("removed {} values from f_zero_slope plot.".format(length_before - len(cell)))
|
|
|
|
minimum = min(min(cell), min(model))
|
|
maximum = max(max(cell), max(model))
|
|
step = (maximum - minimum) / num_of_bins
|
|
bins = np.arange(minimum, maximum + step, step)
|
|
|
|
ax = fig.add_subplot(gs[1, i])
|
|
ax_histx = fig.add_subplot(gs[0, i], sharex=ax)
|
|
scatter_hist(cell, model, ax, ax_histx, behaviour_titles["f_zero_slope"], bins)
|
|
ax.set_xlabel("Cell [Hz]")
|
|
ax.set_ylabel("Model [Hz]")
|
|
ax_histx.set_ylabel("Count")
|
|
i += 1
|
|
|
|
# ratio:
|
|
cell_inf = cell_behavior["f_inf_slope"]
|
|
model_inf = model_behaviour["f_inf_slope"]
|
|
cell_zero = cell_behavior["f_zero_slope"]
|
|
model_zero = model_behaviour["f_zero_slope"]
|
|
|
|
cell_ratio = [cell_zero[i]/cell_inf[i] for i in range(len(cell_inf))]
|
|
model_ratio = [model_zero[i]/model_inf[i] for i in range(len(model_inf))]
|
|
|
|
idx = np.array(cell_ratio) < 60
|
|
cell_ratio = np.array(cell_ratio)[idx]
|
|
model_ratio = np.array(model_ratio)[idx]
|
|
|
|
idx = np.array(model_ratio) < 60
|
|
cell_ratio = np.array(cell_ratio)[idx]
|
|
model_ratio = np.array(model_ratio)[idx]
|
|
|
|
both_ratios = list(cell_ratio.copy())
|
|
both_ratios.extend(model_ratio)
|
|
|
|
bins = calculate_bins(both_ratios, num_of_bins)
|
|
|
|
ax = fig.add_subplot(gs[1, i])
|
|
ax_histx = fig.add_subplot(gs[0, i], sharex=ax)
|
|
scatter_hist(cell_ratio, model_ratio, ax, ax_histx, r"$f_0$ / $f_{\infty}$ slope ratio", bins)
|
|
ax.set_xlabel("Cell")
|
|
ax.set_ylabel("Model")
|
|
ax_histx.set_ylabel("Count")
|
|
|
|
plt.tight_layout()
|
|
|
|
# fig.text(0.085, 0.925, 'A', ha='center', va='center', rotation='horizontal', size=16, family='serif')
|
|
# fig.text(0.54, 0.925, 'B', ha='center', va='center', rotation='horizontal', size=16, family='serif')
|
|
|
|
plt.savefig(consts.SAVE_FOLDER + "fit_adaption_comparison_with_ratio.pdf", transparent=True)
|
|
plt.close()
|
|
|
|
mpl.rc("axes.formatter", limits=(-5, 6))
|
|
|
|
|
|
def scatter_hist(cell_values, model_values, ax, ax_histx, behaviour, bins, cmap=None, color_values=None):
|
|
# copied from matplotlib
|
|
|
|
# the scatter plot:
|
|
minimum = min(min(cell_values), min(model_values))
|
|
maximum = max(max(cell_values), max(model_values))
|
|
ax.plot((minimum, maximum), (minimum, maximum), color="grey")
|
|
if cmap is None:
|
|
ax.scatter(cell_values, model_values, color="black")
|
|
else:
|
|
ax.scatter(cell_values, model_values, c=color_values, cmap=cmap)
|
|
ax_histx.hist(model_values, bins=bins, color=consts.COLOR_MODEL, alpha=0.75)
|
|
ax_histx.hist(cell_values, bins=bins, color=consts.COLOR_DATA, alpha=0.50)
|
|
|
|
ax_histx.set_title(behaviour)
|
|
|
|
|
|
def calculate_bins(values, num_of_bins):
|
|
minimum = np.min(values)
|
|
maximum = np.max(values)
|
|
step = (maximum - minimum) / (num_of_bins-1)
|
|
|
|
bins = np.arange(minimum-0.5*step, maximum + step, step)
|
|
return bins
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|