import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import matplotlib as mpl from scipy.stats import pearsonr import os from analysis import get_filtered_fit_info, get_behaviour_values, get_parameter_values, behaviour_correlations, parameter_correlations from fitting.ModelFit import get_best_fit from experiments.Baseline import BaselineModel, BaselineCellData from experiments.FiCurve import FICurveModel, FICurveCellData from parser.CellData import CellData from my_util import functions as fu from my_util import save_load import Figure_constants as consts parameter_titles = {"input_scaling": r"$\alpha$", "delta_a": r"$\Delta_A$", "mem_tau": r"$\tau_m$", "noise_strength": r"$\sqrt{2D}$", "refractory_period": "$t_{ref}$", "tau_a": r"$\tau_A$", "v_offset": r"$I_{Bias}$", "dend_tau": r"$\tau_{dend}$"} parameter_xlabels = {"input_scaling": "cm", "delta_a": r"$\Delta_A$", "mem_tau": r"$\tau_m$", "noise_strength": r"$\sqrt{2D}$", "refractory_period": "$t_{ref}$", "tau_a": r"$\tau_A$", "v_offset": r"$I_{Bias}$", "dend_tau": r"$\tau_{dend}$"} behaviour_titles = {"baseline_frequency": "Base Rate", "Burstiness": "Burst", "coefficient_of_variation": "CV", "serial_correlation": "SC", "vector_strength": "VS", "f_inf_slope": r"$f_{\infty}$ Slope", "f_zero_slope": r"$f_0$ Slope", "f_zero_middle": r"$f_0$ middle", "eodf": "EODf"} def main(): # run_all_images() # quit() dir_path = "results/final_2/" # dend_tau_and_ref_effect() # quit() fits_info = get_filtered_fit_info(dir_path, filter=True) # visualize_tested_correlations(fits_info) quit() print("Cells left:", len(fits_info)) cell_behaviour, model_behaviour = get_behaviour_values(fits_info) # plot_cell_model_comp_baseline(cell_behaviour, model_behaviour) # plot_cell_model_comp_burstiness(cell_behaviour, model_behaviour) plot_cell_model_comp_adaption(cell_behaviour, model_behaviour) behaviour_correlations_plot(fits_info) parameter_correlation_plot(fits_info) # # create_parameter_distributions(get_parameter_values(fits_info)) # create_parameter_distributions(get_parameter_values(fits_info, scaled=True, goal_eodf=800), "scaled_to_800_") # errors = calculate_percent_errors(fits_info) # create_boxplots(errors) # example_bad_hist_fits(dir_path) # example_good_fi_fits(dir_path) # example_bad_fi_fits(dir_path) def run_all_images(dir_path, filter=True, pre_analysis_path="", recalculate=False): if pre_analysis_path != "": fit_info_name = "figures_res_fit_info.npy" behaviours_name = "figures_res_behaviour.npy" fit_info_path = os.path.join(pre_analysis_path, fit_info_name) if not os.path.exists(fit_info_path) or recalculate: fits_info = get_filtered_fit_info(dir_path, filter=filter) save_load.save(fits_info, fit_info_path) else: fits_info = save_load.load(fit_info_path) behaviours_path = os.path.join(pre_analysis_path, behaviours_name) if not os.path.exists(behaviours_path) or recalculate: cell_behaviour, model_behaviour = get_behaviour_values(fits_info) save_load.save([cell_behaviour, model_behaviour], behaviours_path) else: cell_behaviour, model_behaviour = save_load.load(behaviours_path) else: fits_info = get_filtered_fit_info(dir_path, filter=True) cell_behaviour, model_behaviour = get_behaviour_values(fits_info) plot_cell_model_comp_baseline(cell_behaviour, model_behaviour) plot_cell_model_comp_adaption(cell_behaviour, model_behaviour) plot_cell_model_comp_burstiness(cell_behaviour, model_behaviour) behaviour_correlations_plot(fits_info) parameter_correlation_plot(fits_info) create_parameter_distributions(get_parameter_values(fits_info)) create_parameter_distributions(get_parameter_values(fits_info, scaled=True, goal_eodf=800), "scaled_to_800_") # Plots using example cells: # dend_tau_and_ref_effect() # example_good_hist_fits(dir_path) # example_bad_hist_fits(dir_path) # example_good_fi_fits(dir_path) # example_bad_fi_fits(dir_path) def visualize_tested_correlations(fits_info): for leave_out in range(1, 11, 1): significance_count, total_count, labels = test_correlations(fits_info, leave_out, model_values=False) percentages = significance_count / total_count border = total_count * 0.01 fig = plt.figure(tight_layout=True, figsize=consts.FIG_SIZE_MEDIUM_WIDE) gs = gridspec.GridSpec(2, 2, width_ratios=(1, 1), height_ratios=(5, 0.5), hspace=0.5, wspace=0.4, left=0.2) ax = fig.add_subplot(gs[0, 0]) # We want to show all ticks... ax.imshow(percentages) ax.set_xticks(np.arange(len(labels))) ax.set_xticklabels([behaviour_titles[l] for l in labels]) # remove frame: ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) # ... and label them with the respective list entries ax.set_yticks(np.arange(len(labels))) ax.set_yticklabels([behaviour_titles[l] for l in labels]) ax.set_title("Percent: removed {}".format(leave_out)) # Rotate the tick labels and set their alignment. plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor") # Loop over data dimensions and create text annotations. for i in range(len(labels)): for j in range(len(labels)): if percentages[i, j] > 0.5: text = ax.text(j, i, "{:.2f}".format(percentages[i, j]), ha="center", va="center", color="black", size=6) else: text = ax.text(j, i, "{:.2f}".format(percentages[i, j]), ha="center", va="center", color="white", size=6) ax = fig.add_subplot(gs[0, 1]) ax.imshow(percentages) ax.set_xticks(np.arange(len(labels))) ax.set_xticklabels([behaviour_titles[l] for l in labels]) # remove frame: ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) # ... and label them with the respective list entries ax.set_yticks(np.arange(len(labels))) ax.set_yticklabels([behaviour_titles[l] for l in labels]) ax.set_title("Counts - removed {}".format(leave_out)) # Rotate the tick labels and set their alignment. plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor") # Loop over data dimensions and create text annotations. for i in range(len(labels)): for j in range(len(labels)): if percentages[i, j] > 0.5: text = ax.text(j, i, "{:.0f}".format(significance_count[i, j]), ha="center", va="center", color="black", size=6) else: text = ax.text(j, i, "{:.0f}".format(significance_count[i, j]), ha="center", va="center", color="white", size=6) ax_col = fig.add_subplot(gs[1, :]) data = [np.arange(0, 1.001, 0.01)] * 10 ax_col.set_xticks([0, 25, 50, 75, 100]) ax_col.set_xticklabels([0, 0.25, 0.5, 0.75, 1]) ax_col.set_yticks([]) ax_col.imshow(data) ax_col.set_xlabel("Correlation Coefficients") plt.tight_layout() plt.savefig("figures/consistency_correlations_removed_{}.pdf".format(leave_out)) def test_correlations(fits_info, left_out, model_values=False): bv_cell, bv_model = get_behaviour_values(fits_info) # eod_frequencies = [fits_info[cell][3] for cell in sorted(fits_info.keys())] if model_values: behaviour_values = bv_model else: behaviour_values = bv_cell labels = ["baseline_frequency", "serial_correlation", "vector_strength", "coefficient_of_variation", "Burstiness", "f_inf_slope", "f_zero_slope"] # , "eodf"] significance_counts = np.zeros((len(labels), len(labels))) correction_factor = sum(range(len(labels))) total_count = 0 for mask in iall_masks(len(behaviour_values["f_inf_slope"]), left_out): total_count += 1 idx = np.ones(len(behaviour_values["f_inf_slope"]), dtype=np.int32) for masked in mask: idx[masked] = 0 for i in range(len(labels)): for j in range(len(labels)): if j > i: continue idx = np.array(idx, dtype=np.bool) values_i = np.array(behaviour_values[labels[i]])[idx] values_j = np.array(behaviour_values[labels[j]])[idx] c, p = pearsonr(values_i, values_j) if p*correction_factor < 0.05: significance_counts[i, j] += 1 return significance_counts, total_count, labels def iall_masks(values_count: int, left_out: int): mask = np.array(range(left_out)) while True: if mask[0] == values_count - left_out + 1: break yield mask mask[-1] += 1 if mask[-1] >= values_count: idx_to_start = 0 for i in range(left_out-1): if mask[-1 - i] >= values_count-i: mask[-1 - (i+1)] += 1 idx_to_start -= 1 else: break while idx_to_start < 0: # print("i:", idx_to_start, "mask:", mask) mask[idx_to_start] = mask[idx_to_start -1] + 1 idx_to_start += 1 # print("i:", idx_to_start, "mask:", mask, "end") def dend_tau_and_ref_effect(): cells = ["2012-12-21-am-invivo-1", "2014-03-19-ad-invivo-1", "2014-03-25-aa-invivo-1"] cell_type = ["no burster", "burster", "strong burster"] folders = ["results/ref_and_tau/no_dend_tau/", "results/ref_and_tau/no_ref_period/", "results/final_2/"] title = [r"without $\tau_{dend}$", r"without $t_{ref}$", "with both"] fig, axes = plt.subplots(len(cells), 3, figsize=consts.FIG_SIZE_LARGE, sharey="row", sharex="all") for i, cell in enumerate(cells): cell_data = CellData("data/final/" + cell) cell_baseline = BaselineCellData(cell_data) cell_baseline.load_values(cell_data.get_data_path()) eodf = cell_data.get_eod_frequency() print(cell) print("EODf:", eodf) print("base rate:", cell_baseline.get_baseline_frequency()) print("bursty:", cell_baseline.get_burstiness()) print() for j, folder in enumerate(folders): fit = get_best_fit(folder + cell) model_baseline = BaselineModel(fit.get_model(), eodf) cell_isis = cell_baseline.get_interspike_intervals() * eodf model_isis = model_baseline.get_interspike_intervals() * eodf bins = np.arange(0, 0.025, 0.0001) * eodf if i == 0 and j == 2: axes[i, j].hist(model_isis, density=True, bins=bins, color=consts.COLOR_MODEL, alpha=0.75, label="model") axes[i, j].hist(cell_isis, density=True, bins=bins, color=consts.COLOR_DATA, alpha=0.5, label="data") axes[i, j].legend(loc="upper right", frameon=False) else: axes[i, j].hist(model_isis, density=True, bins=bins, color=consts.COLOR_MODEL, alpha=0.75) axes[i, j].hist(cell_isis, density=True, bins=bins, color=consts.COLOR_DATA, alpha=0.5) if j == 0: axes[i, j].set_ylabel(cell_type[i]) axes[i, j].set_yticklabels([]) if i == 0: axes[0, j].set_title(title[j]) plt.xlim(0, 17.5) fig.text(0.5, 0.04, 'Time [EOD periods]', ha='center', va='center') # shared x label fig.text(0.06, 0.5, 'ISI Density', ha='center', va='center', rotation='vertical') # shared y label fig.text(0.11, 0.9, 'A', ha='center', va='center', rotation='horizontal', size=16, family='serif') fig.text(0.3825, 0.9, 'B', ha='center', va='center', rotation='horizontal', size=16, family='serif') fig.text(0.655, 0.9, 'C', ha='center', va='center', rotation='horizontal', size=16, family='serif') # fig.text(0.11, 0.86, '1', ha='center', va='center', rotation='horizontal', size=16, family='serif') # fig.text(0.11, 0.59, '2', ha='center', va='center', rotation='horizontal', size=16, family='serif') # fig.text(0.11, 0.32, '3', ha='center', va='center', rotation='horizontal', size=16, family='serif') plt.savefig(consts.SAVE_FOLDER + "dend_ref_effect.pdf", transparent=True) plt.close() def create_parameter_distributions(par_values, prefix=""): fig, axes = plt.subplots(4, 2, gridspec_kw={"left": 0.1, "hspace": 0.5}, figsize=consts.FIG_SIZE_LARGE_HIGH) if len(par_values.keys()) != 8: print("not eight parameters") labels = ["input_scaling", "v_offset", "mem_tau", "noise_strength", "tau_a", "delta_a", "dend_tau", "refractory_period"] x_labels = ["[cm]", "[mV]", "[ms]", r"[mV$\sqrt{s}$]", "[ms]", "[mVms]", "[ms]", "[ms]"] axes_flat = axes.flatten() for i, l in enumerate(labels): bins = calculate_bins(par_values[l], 20) if "ms" in x_labels[i]: bins *= 1000 par_values[l] = np.array(par_values[l]) * 1000 axes_flat[i].hist(par_values[l], bins=bins, color=consts.COLOR_MODEL, alpha=0.75) # axes_flat[i].set_title(parameter_titles[l]) axes_flat[i].set_xlabel(parameter_titles[l] + " " + x_labels[i]) fig.text(0.03, 0.5, 'Count', ha='center', va='center', rotation='vertical', size=12) # shared y label plt.tight_layout() consts.set_figure_labels(xoffset=-2.5, yoffset=1.5) # fig.label_axes() plt.savefig(consts.SAVE_FOLDER + prefix + "parameter_distributions.pdf") plt.close() def behaviour_correlations_plot(fits_info): fig = plt.figure(tight_layout=True, figsize=consts.FIG_SIZE_MEDIUM_WIDE) gs = gridspec.GridSpec(2, 2, width_ratios=(1, 1), height_ratios=(5, 0.5), hspace=0.5, wspace=0.15, left=0.2) # fig, axes = plt.subplots(1, 2, figsize=consts.FIG_SIZE_MEDIUM_WIDE) keys, corr_values, corrected_p_values = behaviour_correlations(fits_info, model_values=False) labels = [behaviour_titles[k] for k in keys] img = create_correlation_plot(fig.add_subplot(gs[0, 0]), labels, corr_values, corrected_p_values, "Data") keys, corr_values, corrected_p_values = behaviour_correlations(fits_info, model_values=True) labels = [behaviour_titles[k] for k in keys] ax = fig.add_subplot(gs[0, 1]) img = create_correlation_plot(ax, labels, corr_values, corrected_p_values, "Model", y_label=False) # cbar = ax.figure.colorbar(im, ax=ax, **cbar_kw) ax_col = fig.add_subplot(gs[1, :]) data = [np.arange(-1, 1.001, 0.01)] * 10 ax_col.set_xticks([0, 25, 50, 75, 100, 125, 150, 175, 200]) ax_col.set_xticklabels([-1, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75, 1]) ax_col.set_yticks([]) ax_col.imshow(data) ax_col.set_xlabel("Correlation Coefficients") plt.tight_layout() plt.savefig(consts.SAVE_FOLDER + "behaviour_correlations.pdf") plt.close() def parameter_correlation_plot(fits_info): labels, corr_values, corrected_p_values = parameter_correlations(fits_info) par_labels = [parameter_titles[l] for l in labels] fig, ax = plt.subplots(1, 1, figsize=consts.FIG_SIZE_MEDIUM) # ax, labels, correlations, p_values, title, y_label=True im = create_correlation_plot(ax, par_labels, corr_values, corrected_p_values, "") fig.colorbar(im, ax=ax) plt.savefig(consts.SAVE_FOLDER + "parameter_correlations.pdf") plt.close() def create_correlation_plot(ax, labels, correlations, p_values, title, y_label=True): cleaned_cors = np.zeros(correlations.shape) for i in range(correlations.shape[0]): for j in range(correlations.shape[1]): if abs(p_values[i, j]) < 0.05: cleaned_cors[i, j] = correlations[i, j] else: cleaned_cors[i, j] = np.NAN if j > i: cleaned_cors[i, j] = np.NAN im = ax.imshow(cleaned_cors, vmin=-1, vmax=1) # We want to show all ticks... ax.set_xticks(np.arange(len(labels))) ax.set_xticklabels(labels) # remove frame: ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) # ... and label them with the respective list entries if y_label: ax.set_yticks(np.arange(len(labels))) ax.set_yticklabels(labels) else: ax.set_yticklabels([]) ax.set_title(title) # Rotate the tick labels and set their alignment. plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor") # Loop over data dimensions and create text annotations. for i in range(len(labels)): for j in range(len(labels)): if not np.isnan(cleaned_cors[i, j]): if cleaned_cors[i, j] > 0: text = ax.text(j, i, "{:.2f}".format(cleaned_cors[i, j]), ha="center", va="center", color="black", size=6) else: text = ax.text(j, i, "{:.2f}".format(cleaned_cors[i, j]), ha="center", va="center", color="white", size=6) # if p_values[i][j] < 0.0001: # text = ax.text(j, i, "***", ha="center", va="center", color="b") # elif p_values[i][j] < 0.001: # text = ax.text(j, i, "**", ha="center", va="center", color="b") # elif p_values[i][j] < 0.05: # text = ax.text(j, i, "*", ha="center", va="center", color="b") return im def example_good_hist_fits(dir_path): strong_bursty_cell = "2018-05-08-ac-invivo-1" bursty_cell = "2014-03-19-ad-invivo-1" non_bursty_cell = "2012-12-21-am-invivo-1" fig, axes = plt.subplots(1, 3, sharex="all", figsize=(8, 4)) for i, cell in enumerate([non_bursty_cell, bursty_cell, strong_bursty_cell]): fit_dir = dir_path + cell + "/" fit = get_best_fit(fit_dir) cell_data = fit.get_cell_data() eodf = cell_data.get_eod_frequency() model = fit.get_model() baseline_model = BaselineModel(model, eodf, trials=5) model_isi = np.array(baseline_model.get_interspike_intervals()) * eodf cell_isi = BaselineCellData(cell_data).get_interspike_intervals() * eodf bins = np.arange(0, 0.025, 0.0001) * eodf axes[i].hist(model_isi, bins=bins, density=True, alpha=0.75, color=consts.COLOR_MODEL) axes[i].hist(cell_isi, bins=bins, density=True, alpha=0.5, color=consts.COLOR_DATA) axes[i].set_xlabel("ISI in EOD periods") axes[0].set_ylabel("Density") plt.tight_layout() consts.set_figure_labels(xoffset=-2.5) fig.label_axes() plt.savefig(consts.SAVE_FOLDER + "example_good_isi_hist_fits.pdf", transparent=True) plt.close() def example_bad_hist_fits(dir_path): bursty_cell = "2014-06-06-ag-invivo-1" strong_bursty_cell = "2018-05-08-ab-invivo-1" extra_structure_cell = "2014-12-11-ad-invivo-1" fig, axes = plt.subplots(1, 3, sharex="all", figsize=consts.FIG_SIZE_SMALL_EXTRA_WIDE) # , gridspec_kw={"top": 0.95}) for i, cell in enumerate([bursty_cell, strong_bursty_cell, extra_structure_cell]): fit_dir = dir_path + cell + "/" fit = get_best_fit(fit_dir) cell_data = fit.get_cell_data() eodf = cell_data.get_eod_frequency() model = fit.get_model() baseline_model = BaselineModel(model, eodf, trials=5) cell_baseline = BaselineCellData(cell_data) print(cell) print("EODf:", eodf) print("base rate:", cell_baseline.get_baseline_frequency()) print("bursty:", cell_baseline.get_burstiness()) print() model_isi = np.array(baseline_model.get_interspike_intervals()) * eodf cell_isi = cell_baseline.get_interspike_intervals() * eodf bins = np.arange(0, 0.025, 0.0001) * eodf if i == 0: axes[i].hist(model_isi, bins=bins, density=True, alpha=0.75, color=consts.COLOR_MODEL, label="model") axes[i].hist(cell_isi, bins=bins, density=True, alpha=0.5, color=consts.COLOR_DATA, label="data") axes[i].legend(loc="upper right", frameon=False) else: axes[i].hist(model_isi, bins=bins, density=True, alpha=0.75, color=consts.COLOR_MODEL) axes[i].hist(cell_isi, bins=bins, density=True, alpha=0.5, color=consts.COLOR_DATA) axes[i].set_xlabel("ISI [EOD periods]") axes[0].set_ylabel("Density") plt.tight_layout() consts.set_figure_labels(xoffset=-2.5, yoffset=1.25) fig.label_axes() plt.savefig(consts.SAVE_FOLDER + "example_bad_isi_hist_fits.pdf", transparent=True) plt.close() def example_good_fi_fits(dir_path): fig, axes = plt.subplots(1, 3, figsize=consts.FIG_SIZE_SMALL_EXTRA_WIDE, sharey="all") for i, cell in enumerate(["2012-12-21-am-invivo-1", "2014-03-19-ae-invivo-1", "2014-03-25-aa-invivo-1" ]): fit_dir = dir_path + cell + "/" fit = get_best_fit(fit_dir) cell_data = fit.get_cell_data() eodf = cell_data.get_eod_frequency() cell_baseline = BaselineCellData(cell_data) print(cell) print("EODf:", eodf) print("base rate:", cell_baseline.get_baseline_frequency()) print("bursty:", cell_baseline.get_burstiness()) print() model = fit.get_model() contrasts = cell_data.get_fi_contrasts() fi_curve_data = FICurveCellData(cell_data, contrasts, save_dir=cell_data.get_data_path()) contrasts = fi_curve_data.stimulus_values x_values = np.arange(min(contrasts), max(contrasts), 0.001) fi_curve_model = FICurveModel(model, contrasts, eodf, trials=10) f_zero_fit = fi_curve_data.f_zero_fit f_inf_fit = fi_curve_data.f_inf_fit # f zero response axes[i].plot(contrasts, fi_curve_data.get_f_zero_frequencies(), ',', marker=consts.f0_marker, alpha=0.75, color=consts.COLOR_DATA_f0, label=r"data $f_0$") axes[i].plot(x_values, fu.full_boltzmann(x_values, f_zero_fit[0], f_zero_fit[1], f_zero_fit[2], f_zero_fit[3]), color=consts.COLOR_DATA_f0, alpha=0.75) axes[i].plot(contrasts, fi_curve_model.get_f_zero_frequencies(), ',', marker=consts.f0_marker, alpha=0.75, color=consts.COLOR_MODEL_f0, label=r"model $f_0$") # f inf response axes[i].plot(contrasts, fi_curve_data.get_f_inf_frequencies(), ',', marker=consts.finf_marker, alpha=0.5, color=consts.COLOR_DATA_finf, label=r"data $f_{\infty}$") axes[i].plot(x_values, fu.clipped_line(x_values, f_inf_fit[0], f_inf_fit[1]), color=consts.COLOR_DATA_finf, alpha=0.5) axes[i].plot(contrasts, fi_curve_model.get_f_inf_frequencies(), ',', marker=consts.finf_marker, alpha=0.75, color=consts.COLOR_MODEL_finf, label=r"model $f_{\infty}$") axes[i].set_xlabel("Contrast") axes[i].set_xlim((-0.22, 0.22)) axes[0].legend(loc="upper left", frameon=False) axes[0].set_ylabel("Frequency [Hz]") plt.tight_layout() consts.set_figure_labels(xoffset=-2.5) fig.label_axes() plt.savefig(consts.SAVE_FOLDER + "example_good_fi_fits.pdf", transparent=True) plt.close() def example_bad_fi_fits(dir_path): fig, axes = plt.subplots(1, 2, figsize=consts.FIG_SIZE_SMALL_EXTRA_WIDE) # "2013-01-08-aa-invivo-1" candidate cell for i, cell in enumerate(["2012-12-13-ao-invivo-1", "2014-01-23-ab-invivo-1"]): fit_dir = dir_path + cell + "/" fit = get_best_fit(fit_dir) cell_data = fit.get_cell_data() eodf = cell_data.get_eod_frequency() cell_baseline = BaselineCellData(cell_data) print(cell) print("EODf:", eodf) print("base rate:", cell_baseline.get_baseline_frequency()) print("bursty:", cell_baseline.get_burstiness()) print() model = fit.get_model() contrasts = cell_data.get_fi_contrasts() fi_curve_data = FICurveCellData(cell_data, contrasts, save_dir=cell_data.get_data_path()) contrasts = fi_curve_data.stimulus_values x_values = np.arange(min(contrasts), max(contrasts), 0.001) fi_curve_model = FICurveModel(model, contrasts, eodf, trials=10) f_zero_fit = fi_curve_data.f_zero_fit f_inf_fit = fi_curve_data.f_inf_fit # f zero response axes[i].plot(contrasts, fi_curve_data.get_f_zero_frequencies(), ',', marker=consts.f0_marker, alpha=0.75, color=consts.COLOR_DATA_f0, label=r"data $f_0$") axes[i].plot(x_values, fu.full_boltzmann(x_values, f_zero_fit[0], f_zero_fit[1], f_zero_fit[2], f_zero_fit[3]), color=consts.COLOR_DATA_f0, alpha=0.75) axes[i].plot(contrasts, fi_curve_model.get_f_zero_frequencies(), ',', marker=consts.f0_marker, alpha=0.75, color=consts.COLOR_MODEL_f0, label=r"model $f_0$") # f inf response axes[i].plot(contrasts, fi_curve_data.get_f_inf_frequencies(), ',', marker=consts.finf_marker, alpha=0.5, color=consts.COLOR_DATA_finf, label=r"data $f_{\infty}$") axes[i].plot(x_values, fu.clipped_line(x_values, f_inf_fit[0], f_inf_fit[1]), color=consts.COLOR_DATA_finf, alpha=0.5) axes[i].plot(contrasts, fi_curve_model.get_f_inf_frequencies(), ',', marker=consts.finf_marker, alpha=0.75, color=consts.COLOR_MODEL_finf, label=r"model $f_{\infty}$") axes[i].set_xlabel("Contrast") axes[i].set_xlim((-0.22, 0.2)) axes[0].set_ylabel("Frequency [Hz]") axes[0].legend(loc="upper left", frameon=False) plt.tight_layout() consts.set_figure_labels(xoffset=-2.5) fig.label_axes() plt.savefig(consts.SAVE_FOLDER + "example_bad_fi_fits.pdf", transparent=True) plt.close() def create_boxplots(errors): labels = ["{}_n:{}".format(k, len(errors[k])) for k in sorted(errors.keys())] for k in sorted(errors.keys()): print("{}: median %-error: {:.2f}".format(k, np.median(errors[k]))) y_values = [errors[k] for k in sorted(errors.keys())] plt.boxplot(y_values) plt.xticks(np.arange(1, len(y_values)+1, 1), labels, rotation=45) plt.tight_layout() plt.show() plt.close() def plot_cell_model_comp_baseline(cell_behavior, model_behaviour): fig = plt.figure(figsize=(8, 4)) gs = fig.add_gridspec(2, 3, width_ratios=[5, 5, 5], height_ratios=[3, 7], left=0.1, right=0.95, bottom=0.1, top=0.9, wspace=0.4, hspace=0.2) num_of_bins = 20 cmap = 'jet' cell_bursting = cell_behavior["Burstiness"] # baseline freq plot: i = 0 cell = cell_behavior["baseline_frequency"] model = model_behaviour["baseline_frequency"] minimum = min(min(cell), min(model)) maximum = max(max(cell), max(model)) step = (maximum - minimum) / num_of_bins bins = np.arange(minimum, maximum + step, step) ax = fig.add_subplot(gs[1, i]) ax_histx = fig.add_subplot(gs[0, i], sharex=ax) scatter_hist(cell, model, ax, ax_histx, behaviour_titles["baseline_frequency"], bins) # , cmap, cell_bursting) ax.set_xlabel(r"Cell [Hz]") ax.set_ylabel(r"Model [Hz]") ax_histx.set_ylabel("Count") i += 1 cell = cell_behavior["vector_strength"] model = model_behaviour["vector_strength"] minimum = min(min(cell), min(model)) maximum = max(max(cell), max(model)) step = (maximum - minimum) / num_of_bins bins = np.arange(minimum, maximum + step, step) ax = fig.add_subplot(gs[1, i]) ax_histx = fig.add_subplot(gs[0, i], sharex=ax) print("Cells in cell_model_comp_baseline:", len(cell)) scatter_hist(cell, model, ax, ax_histx, behaviour_titles["vector_strength"], bins) # , cmap, cell_bursting) ax.set_xlabel(r"Cell") ax.set_ylabel(r"Model") ax_histx.set_ylabel("Count") i += 1 cell = cell_behavior["serial_correlation"] model = model_behaviour["serial_correlation"] minimum = min(min(cell), min(model)) maximum = max(max(cell), max(model)) step = (maximum - minimum) / num_of_bins bins = np.arange(minimum, maximum + step, step) ax = fig.add_subplot(gs[1, i]) ax_histx = fig.add_subplot(gs[0, i], sharex=ax) scatter_hist(cell, model, ax, ax_histx, behaviour_titles["serial_correlation"], bins) # , cmap, cell_bursting) ax.set_xlabel(r"Cell") ax.set_ylabel(r"Model") fig.text(0.09, 0.925, 'A', ha='center', va='center', rotation='horizontal', size=16, family='serif') fig.text(0.375, 0.925, 'B', ha='center', va='center', rotation='horizontal', size=16, family='serif') fig.text(0.6625, 0.925, 'C', ha='center', va='center', rotation='horizontal', size=16, family='serif') ax_histx.set_ylabel("Count") i += 1 plt.tight_layout() plt.savefig(consts.SAVE_FOLDER + "fit_baseline_comparison.pdf", transparent=True) plt.close() def plot_cell_model_comp_burstiness(cell_behavior, model_behaviour): fig = plt.figure(figsize=consts.FIG_SIZE_MEDIUM_WIDE) # ("Burstiness", "coefficient_of_variation") # Add a gridspec with two rows and two columns and a ratio of 2 to 7 between # the size of the marginal axes and the main axes in both directions. # Also adjust the subplot parameters for a square plot. gs = fig.add_gridspec(2, 2, width_ratios=[5, 5], height_ratios=[3, 7], left=0.1, right=0.9, bottom=0.1, top=0.9, wspace=0.3, hspace=0.2) num_of_bins = 20 # baseline freq plot: i = 0 cmap = 'jet' cell = cell_behavior["Burstiness"] cell_bursting = cell model = model_behaviour["Burstiness"] minimum = min(min(cell), min(model)) maximum = max(max(cell), max(model)) step = (maximum - minimum) / num_of_bins bins = np.arange(minimum, maximum + step, step) ax = fig.add_subplot(gs[1, i]) ax.set_xlabel("Cell [%ms]") ax.set_ylabel("Model [%ms]") ax_histx = fig.add_subplot(gs[0, i], sharex=ax) ax_histx.set_ylabel("Count") scatter_hist(cell, model, ax, ax_histx, behaviour_titles["Burstiness"], bins, cmap, cell_bursting) i += 1 cell = cell_behavior["coefficient_of_variation"] model = model_behaviour["coefficient_of_variation"] minimum = min(min(cell), min(model)) maximum = max(max(cell), max(model)) step = (maximum - minimum) / num_of_bins bins = np.arange(minimum, maximum + step, step) ax = fig.add_subplot(gs[1, i]) ax_histx = fig.add_subplot(gs[0, i], sharex=ax) scatter_hist(cell, model, ax, ax_histx, behaviour_titles["coefficient_of_variation"], bins, cmap, cell_bursting) ax.set_xlabel("Cell") ax.set_ylabel("Model") ax_histx.set_ylabel("Count") plt.tight_layout() fig.text(0.085, 0.925, 'A', ha='center', va='center', rotation='horizontal', size=16, family='serif') fig.text(0.53, 0.925, 'B', ha='center', va='center', rotation='horizontal', size=16, family='serif') plt.savefig(consts.SAVE_FOLDER + "fit_burstiness_comparison.pdf", transparent=True) plt.close() def plot_cell_model_comp_adaption(cell_behavior, model_behaviour): fig = plt.figure(figsize=(8, 4)) gs = fig.add_gridspec(2, 3, width_ratios=[5, 5, 5], height_ratios=[3, 7], left=0.1, right=0.95, bottom=0.1, top=0.9, wspace=0.4, hspace=0.3) # ("f_inf_slope", "f_zero_slope") # Add a gridspec with two rows and two columns and a ratio of 2 to 7 between # the size of the marginal axes and the main axes in both directions. # Also adjust the subplot parameters for a square plot. mpl.rc("axes.formatter", limits=(-5, 3)) num_of_bins = 20 # baseline freq plot: i = 0 cell = cell_behavior["f_inf_slope"] model = model_behaviour["f_inf_slope"] minimum = min(min(cell), min(model)) maximum = max(max(cell), max(model)) step = (maximum - minimum) / num_of_bins bins = np.arange(minimum, maximum + step, step) ax = fig.add_subplot(gs[1, i]) ax_histx = fig.add_subplot(gs[0, i], sharex=ax) scatter_hist(cell, model, ax, ax_histx, behaviour_titles["f_inf_slope"], bins) ax.set_xlabel(r"Cell [Hz]") ax.set_ylabel(r"Model [Hz]") ax_histx.set_ylabel("Count") i += 1 cell = cell_behavior["f_zero_slope"] model = model_behaviour["f_zero_slope"] length_before = len(cell) idx = np.array(cell) < 25000 cell = np.array(cell)[idx] model = np.array(model)[idx] idx = np.array(model) < 25000 cell = np.array(cell)[idx] model = np.array(model)[idx] print("removed {} values from f_zero_slope plot.".format(length_before - len(cell))) minimum = min(min(cell), min(model)) maximum = max(max(cell), max(model)) step = (maximum - minimum) / num_of_bins bins = np.arange(minimum, maximum + step, step) ax = fig.add_subplot(gs[1, i]) ax_histx = fig.add_subplot(gs[0, i], sharex=ax) scatter_hist(cell, model, ax, ax_histx, behaviour_titles["f_zero_slope"], bins) ax.set_xlabel("Cell [Hz]") ax.set_ylabel("Model [Hz]") ax_histx.set_ylabel("Count") i += 1 # ratio: cell_inf = cell_behavior["f_inf_slope"] model_inf = model_behaviour["f_inf_slope"] cell_zero = cell_behavior["f_zero_slope"] model_zero = model_behaviour["f_zero_slope"] cell_ratio = [cell_zero[i]/cell_inf[i] for i in range(len(cell_inf))] model_ratio = [model_zero[i]/model_inf[i] for i in range(len(model_inf))] idx = np.array(cell_ratio) < 60 cell_ratio = np.array(cell_ratio)[idx] model_ratio = np.array(model_ratio)[idx] idx = np.array(model_ratio) < 60 cell_ratio = np.array(cell_ratio)[idx] model_ratio = np.array(model_ratio)[idx] both_ratios = list(cell_ratio.copy()) both_ratios.extend(model_ratio) bins = calculate_bins(both_ratios, num_of_bins) ax = fig.add_subplot(gs[1, i]) ax_histx = fig.add_subplot(gs[0, i], sharex=ax) scatter_hist(cell_ratio, model_ratio, ax, ax_histx, r"$f_0$ / $f_{\infty}$ slope ratio", bins) ax.set_xlabel("Cell") ax.set_ylabel("Model") ax_histx.set_ylabel("Count") plt.tight_layout() # fig.text(0.085, 0.925, 'A', ha='center', va='center', rotation='horizontal', size=16, family='serif') # fig.text(0.54, 0.925, 'B', ha='center', va='center', rotation='horizontal', size=16, family='serif') plt.savefig(consts.SAVE_FOLDER + "fit_adaption_comparison_with_ratio.pdf", transparent=True) plt.close() mpl.rc("axes.formatter", limits=(-5, 6)) def scatter_hist(cell_values, model_values, ax, ax_histx, behaviour, bins, cmap=None, color_values=None): # copied from matplotlib # the scatter plot: minimum = min(min(cell_values), min(model_values)) maximum = max(max(cell_values), max(model_values)) ax.plot((minimum, maximum), (minimum, maximum), color="grey") if cmap is None: ax.scatter(cell_values, model_values, color="black") else: ax.scatter(cell_values, model_values, c=color_values, cmap=cmap) ax_histx.hist(model_values, bins=bins, color=consts.COLOR_MODEL, alpha=0.75) ax_histx.hist(cell_values, bins=bins, color=consts.COLOR_DATA, alpha=0.50) ax_histx.set_title(behaviour) def calculate_bins(values, num_of_bins): minimum = np.min(values) maximum = np.max(values) step = (maximum - minimum) / (num_of_bins-1) bins = np.arange(minimum-0.5*step, maximum + step, step) return bins if __name__ == '__main__': main()