72 lines
1.7 KiB
Python
72 lines
1.7 KiB
Python
|
|
from Baseline import get_baseline_class
|
|
from CellData import CellData
|
|
from models.LIFACnoise import LifacNoiseModel
|
|
from Baseline import BaselineCellData, BaselineModel
|
|
from os import listdir
|
|
from IPython import embed
|
|
import pyrelacs.DataLoader as Dl
|
|
from ModelFit import ModelFit
|
|
|
|
|
|
|
|
fit = ModelFit("results/invivo_results/start_parameter_7_err_6.87/")
|
|
|
|
print(fit.comparable_error())
|
|
fit.generate_master_plot()
|
|
|
|
|
|
|
|
quit()
|
|
|
|
|
|
|
|
def icelldata_of_dir(base_path):
|
|
global COUNT
|
|
for item in sorted(listdir(base_path)):
|
|
item_path = base_path + item
|
|
|
|
try:
|
|
data = CellData(item_path)
|
|
|
|
yield data
|
|
|
|
except TypeError as e:
|
|
print(str(e))
|
|
|
|
except IndexError as e:
|
|
print(str(e), "\n")
|
|
|
|
except ValueError as e:
|
|
print(str(e), "\n")
|
|
|
|
print("Currently throw errors: {}".format(COUNT))
|
|
|
|
|
|
for data in icelldata_of_dir("invivo_data/"):
|
|
v1 = data.get_base_traces(data.V1)
|
|
|
|
if len(v1) == 0:
|
|
embed()
|
|
quit()
|
|
|
|
|
|
quit()
|
|
|
|
parameter_bursty_model = {'step_size': 5e-05, 'mem_tau': 0.0066693150193490695, 'v_base': 0, 'v_zero': 0,
|
|
'threshold': 1, 'v_offset': -45.703125, 'input_scaling': 172.13861987237314,
|
|
'delta_a': 0.06148215166012024, 'tau_a': 0.03391674075000068, 'a_zero': 2,
|
|
'noise_strength': 0.0684136549210377, 'dend_tau': 0.0013694103932013805,
|
|
'refractory_period': 0.001}
|
|
eod = 752
|
|
model = LifacNoiseModel(parameter_bursty_model)
|
|
baseline_model = get_baseline_class(model, 752, trials=2)
|
|
baseline_model.get_burstiness()
|
|
|
|
quit()
|
|
|
|
|
|
for cell_data in icelldata_of_dir("data/"):
|
|
baseline = get_baseline_class(cell_data)
|
|
|
|
baseline.get_burstiness() |