from Baseline import get_baseline_class from CellData import CellData from models.LIFACnoise import LifacNoiseModel from Baseline import BaselineCellData, BaselineModel from os import listdir from IPython import embed import pyrelacs.DataLoader as Dl from ModelFit import ModelFit fit = ModelFit("results/invivo_results/start_parameter_7_err_6.87/") print(fit.comparable_error()) fit.generate_master_plot() quit() def icelldata_of_dir(base_path): global COUNT for item in sorted(listdir(base_path)): item_path = base_path + item try: data = CellData(item_path) yield data except TypeError as e: print(str(e)) except IndexError as e: print(str(e), "\n") except ValueError as e: print(str(e), "\n") print("Currently throw errors: {}".format(COUNT)) for data in icelldata_of_dir("invivo_data/"): v1 = data.get_base_traces(data.V1) if len(v1) == 0: embed() quit() quit() parameter_bursty_model = {'step_size': 5e-05, 'mem_tau': 0.0066693150193490695, 'v_base': 0, 'v_zero': 0, 'threshold': 1, 'v_offset': -45.703125, 'input_scaling': 172.13861987237314, 'delta_a': 0.06148215166012024, 'tau_a': 0.03391674075000068, 'a_zero': 2, 'noise_strength': 0.0684136549210377, 'dend_tau': 0.0013694103932013805, 'refractory_period': 0.001} eod = 752 model = LifacNoiseModel(parameter_bursty_model) baseline_model = get_baseline_class(model, 752, trials=2) baseline_model.get_burstiness() quit() for cell_data in icelldata_of_dir("data/"): baseline = get_baseline_class(cell_data) baseline.get_burstiness()