100 lines
2.4 KiB
Python
100 lines
2.4 KiB
Python
|
|
import pyrelacs.DataLoader as dl
|
|
import os
|
|
import numpy as np
|
|
|
|
|
|
def get_subfolder_paths(basepath):
|
|
subfolders = []
|
|
for content in os.listdir(basepath):
|
|
content_path = basepath + content
|
|
if os.path.isdir(content_path):
|
|
subfolders.append(content_path)
|
|
|
|
return sorted(subfolders)
|
|
|
|
|
|
def get_traces(directory, trace_type, repro):
|
|
# trace_type = 1: Voltage p-unit
|
|
# trace_type = 2: EOD
|
|
# trace_type = 3: local EOD ~(EOD + stimulus)
|
|
# trace_type = 4: Stimulus
|
|
|
|
load_iter = dl.iload_traces(directory, repro=repro)
|
|
|
|
time_traces = []
|
|
value_traces = []
|
|
|
|
nothing = True
|
|
|
|
for info, key, time, x in load_iter:
|
|
nothing = False
|
|
time_traces.append(time)
|
|
value_traces.append(x[trace_type-1])
|
|
|
|
if nothing:
|
|
print("iload_traces found nothing for the BaselineActivity repro!")
|
|
|
|
return time_traces, value_traces
|
|
|
|
|
|
def get_all_traces(directory, repro):
|
|
load_iter = dl.iload_traces(directory, repro=repro)
|
|
|
|
time_traces = []
|
|
v1_traces = []
|
|
eod_traces = []
|
|
local_eod_traces = []
|
|
stimulus_traces = []
|
|
|
|
nothing = True
|
|
|
|
for info, key, time, x in load_iter:
|
|
nothing = False
|
|
time_traces.append(time)
|
|
v1_traces.append(x[0])
|
|
eod_traces.append(x[1])
|
|
local_eod_traces.append(x[2])
|
|
stimulus_traces.append(x[3])
|
|
print(info)
|
|
|
|
traces = [v1_traces, eod_traces, local_eod_traces, stimulus_traces]
|
|
|
|
if nothing:
|
|
print("iload_traces found nothing for the BaselineActivity repro!")
|
|
|
|
return time_traces, traces
|
|
|
|
|
|
def crappy_smoothing(signal:list, window_size:int = 5) -> list:
|
|
smoothed = []
|
|
|
|
for i in range(len(signal)):
|
|
k = window_size
|
|
if i < window_size:
|
|
k = i
|
|
j = window_size
|
|
if i + j > len(signal):
|
|
j = len(signal) - i
|
|
|
|
smoothed.append(np.mean(signal[i-k:i+j]))
|
|
|
|
return smoothed
|
|
|
|
|
|
def plot_frequency_curve(cell_data, save_path: str = None, indices: list = None):
|
|
contrast = cell_data.get_fi_contrasts()
|
|
time_axes = cell_data.get_time_axes_mean_frequencies()
|
|
mean_freqs = cell_data.get_mean_isi_frequencies()
|
|
|
|
if indices is None:
|
|
indices = np.arange(len(contrast))
|
|
|
|
for i in indices:
|
|
plt.plot(time_axes[i], mean_freqs[i], label=str(round(contrast[i], 2)))
|
|
|
|
if save_path is None:
|
|
plt.show()
|
|
else:
|
|
plt.savefig(save_path + "mean_frequency_curves.png")
|
|
plt.close() |