clean up helper functions

This commit is contained in:
a.ott 2020-01-29 10:59:27 +01:00
parent 3ffa6d5dbe
commit 0adb8e98b9
2 changed files with 121 additions and 106 deletions

View File

@ -4,68 +4,8 @@ import numpy as np
import matplotlib.pyplot as plt
from warnings import warn
import scipy.stats
def get_subfolder_paths(basepath):
subfolders = []
for content in os.listdir(basepath):
content_path = basepath + content
if os.path.isdir(content_path):
subfolders.append(content_path)
return sorted(subfolders)
def get_traces(directory, trace_type, repro):
# trace_type = 1: Voltage p-unit
# trace_type = 2: EOD
# trace_type = 3: local EOD ~(EOD + stimulus)
# trace_type = 4: Stimulus
load_iter = dl.iload_traces(directory, repro=repro)
time_traces = []
value_traces = []
nothing = True
for info, key, time, x in load_iter:
nothing = False
time_traces.append(time)
value_traces.append(x[trace_type-1])
if nothing:
print("iload_traces found nothing for the BaselineActivity repro!")
return time_traces, value_traces
def get_all_traces(directory, repro):
load_iter = dl.iload_traces(directory, repro=repro)
time_traces = []
v1_traces = []
eod_traces = []
local_eod_traces = []
stimulus_traces = []
nothing = True
for info, key, time, x in load_iter:
nothing = False
time_traces.append(time)
v1_traces.append(x[0])
eod_traces.append(x[1])
local_eod_traces.append(x[2])
stimulus_traces.append(x[3])
print(info)
traces = [v1_traces, eod_traces, local_eod_traces, stimulus_traces]
if nothing:
print("iload_traces found nothing for the BaselineActivity repro!")
return time_traces, traces
from numba import jit
import numba as numba
def merge_similar_intensities(intensities, spiketimes, trans_amplitudes):
@ -183,47 +123,8 @@ def calculate_mean_frequency(trial_times, trial_freqs):
return time, mean_freq
def crappy_smoothing(signal:list, window_size:int = 5) -> list:
smoothed = []
for i in range(len(signal)):
k = window_size
if i < window_size:
k = i
j = window_size
if i + j > len(signal):
j = len(signal) - i
smoothed.append(np.mean(signal[i-k:i+j]))
return smoothed
def plot_frequency_curve(cell_data, save_path: str = None, indices: list = None):
contrast = cell_data.get_fi_contrasts()
time_axes = cell_data.get_time_axes_mean_frequencies()
mean_freqs = cell_data.get_mean_isi_frequencies()
if indices is None:
indices = np.arange(len(contrast))
for i in indices:
plt.plot(time_axes[i], mean_freqs[i], label=str(round(contrast[i], 2)))
if save_path is None:
plt.show()
else:
plt.savefig(save_path + "mean_frequency_curves.png")
plt.close()
def rectify(x):
if x < 0:
return 0
return x
def calculate_coefficient_of_variation(spiketimes: list) -> float:
# @jit(nopython=True) # only faster at around 30 000 calls
def calculate_coefficient_of_variation(spiketimes: np.ndarray) -> float:
# CV (stddev of ISI divided by mean ISI (np.diff(spiketimes))
isi = np.diff(spiketimes)
std = np.std(isi)
@ -232,17 +133,31 @@ def calculate_coefficient_of_variation(spiketimes: list) -> float:
return std/mean
def calculate_serial_correlation(spiketimes: list, max_lag: int) -> list:
# @jit(nopython=True) # maybe faster with more than ~60 000 calls
def calculate_serial_correlation(spiketimes: np.ndarray, max_lag: int) -> np.ndarray:
isi = np.diff(spiketimes)
if len(spiketimes) < max_lag + 1:
raise ValueError("Given list to short, with given max_lag")
cor = []
cor = np.zeros(max_lag)
for lag in range(max_lag):
lag = lag + 1
first = isi[:-lag]
second = isi[lag:]
cor.append(np.corrcoef(first, second)[0][1])
cor[lag-1] = np.corrcoef(first, second)[0][1]
return cor
def __vector_strength__(relative_spike_times: np.ndarray, eod_durations: np.ndarray):
# adapted from Ramona
n = len(relative_spike_times)
if n == 0:
return 0
phase_times = (relative_spike_times / eod_durations) * 2 * np.pi
vs = np.sqrt((1 / n * np.sum(np.cos(phase_times))) ** 2 + (1 / n * np.sum(np.sin(phase_times))) ** 2)
return vs

View File

@ -0,0 +1,100 @@
import pyrelacs.DataLoader as dl
import os
import numpy as np
def get_subfolder_paths(basepath):
subfolders = []
for content in os.listdir(basepath):
content_path = basepath + content
if os.path.isdir(content_path):
subfolders.append(content_path)
return sorted(subfolders)
def get_traces(directory, trace_type, repro):
# trace_type = 1: Voltage p-unit
# trace_type = 2: EOD
# trace_type = 3: local EOD ~(EOD + stimulus)
# trace_type = 4: Stimulus
load_iter = dl.iload_traces(directory, repro=repro)
time_traces = []
value_traces = []
nothing = True
for info, key, time, x in load_iter:
nothing = False
time_traces.append(time)
value_traces.append(x[trace_type-1])
if nothing:
print("iload_traces found nothing for the BaselineActivity repro!")
return time_traces, value_traces
def get_all_traces(directory, repro):
load_iter = dl.iload_traces(directory, repro=repro)
time_traces = []
v1_traces = []
eod_traces = []
local_eod_traces = []
stimulus_traces = []
nothing = True
for info, key, time, x in load_iter:
nothing = False
time_traces.append(time)
v1_traces.append(x[0])
eod_traces.append(x[1])
local_eod_traces.append(x[2])
stimulus_traces.append(x[3])
print(info)
traces = [v1_traces, eod_traces, local_eod_traces, stimulus_traces]
if nothing:
print("iload_traces found nothing for the BaselineActivity repro!")
return time_traces, traces
def crappy_smoothing(signal:list, window_size:int = 5) -> list:
smoothed = []
for i in range(len(signal)):
k = window_size
if i < window_size:
k = i
j = window_size
if i + j > len(signal):
j = len(signal) - i
smoothed.append(np.mean(signal[i-k:i+j]))
return smoothed
def plot_frequency_curve(cell_data, save_path: str = None, indices: list = None):
contrast = cell_data.get_fi_contrasts()
time_axes = cell_data.get_time_axes_mean_frequencies()
mean_freqs = cell_data.get_mean_isi_frequencies()
if indices is None:
indices = np.arange(len(contrast))
for i in indices:
plt.plot(time_axes[i], mean_freqs[i], label=str(round(contrast[i], 2)))
if save_path is None:
plt.show()
else:
plt.savefig(save_path + "mean_frequency_curves.png")
plt.close()