various
This commit is contained in:
		
							parent
							
								
									5d009b29d7
								
							
						
					
					
						commit
						f08f962bf3
					
				| @ -291,15 +291,22 @@ class DatParser(AbstractParser): | ||||
|                 else: | ||||
|                     print("DataParser Dat: Unknown time notation:", key[1][0]) | ||||
|             if len(metadata) != 0: | ||||
|                 if not "----- Stimulus -------------------------------------------------------" in metadata[0].keys(): | ||||
|                     eod_freq = float(metadata[0]["EOD rate"][:-2])  # in Hz | ||||
|                     trans_amplitude = metadata[0]["trans. amplitude"][:-2]  # in mV | ||||
| 
 | ||||
|                 stimulus_dict = metadata[0]["----- Stimulus -------------------------------------------------------"] | ||||
|                 analysis_dict = metadata[0]["----- Analysis -------------------------------------------------------"] | ||||
|                 eod_freq = float(metadata[0]["EOD rate"][:-2])  # in Hz | ||||
|                 trans_amplitude = metadata[0]["trans. amplitude"][:-2]  # in mV | ||||
|                     duration = float(metadata[0]["duration"][:-2]) * factor  # normally saved in ms? so change it with the factor | ||||
|                     contrast = float(metadata[0]["contrast"][:-1])  # in percent | ||||
|                     delta_f = float(metadata[0]["deltaf"][:-2]) | ||||
|                 else: | ||||
|                     stimulus_dict = metadata[0]["----- Stimulus -------------------------------------------------------"] | ||||
|                     analysis_dict = metadata[0]["----- Analysis -------------------------------------------------------"] | ||||
|                     eod_freq = float(metadata[0]["EOD rate"][:-2])  # in Hz | ||||
|                     trans_amplitude = metadata[0]["trans. amplitude"][:-2]  # in mV | ||||
| 
 | ||||
|                 duration = float(stimulus_dict["duration"][:-2]) * factor  # normally saved in ms? so change it with the factor | ||||
|                 contrast = float(stimulus_dict["contrast"][:-1])  # in percent | ||||
|                 delta_f = float(stimulus_dict["deltaf"][:-2]) | ||||
|                     duration = float(stimulus_dict["duration"][:-2]) * factor  # normally saved in ms? so change it with the factor | ||||
|                     contrast = float(stimulus_dict["contrast"][:-1])  # in percent | ||||
|                     delta_f = float(stimulus_dict["deltaf"][:-2]) | ||||
| 
 | ||||
|                 # delta_f = metadata[0]["true deltaf"] | ||||
|                 # contrast = metadata[0]["true contrast"] | ||||
| @ -427,77 +434,6 @@ class DatParser(AbstractParser): | ||||
|         # if not exists(self.sam_file): | ||||
|         #     raise RuntimeError(self.sam_file + " file doesn't exist!") | ||||
| 
 | ||||
| # MODEL PARSER: ------------------------------ | ||||
| 
 | ||||
| 
 | ||||
| class ModelParser(AbstractParser): | ||||
| 
 | ||||
|     def __init__(self, model: AbstractModel): | ||||
|         self.model = model | ||||
| 
 | ||||
|     def cell_get_metadata(self): | ||||
|         raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS") | ||||
| 
 | ||||
|     def get_baseline_traces(self): | ||||
|         raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS") | ||||
| 
 | ||||
|     def get_fi_curve_traces(self): | ||||
|         if not self.model.simulates_voltage_trace(): | ||||
|             raise NotImplementedError("Model doesn't simulated voltage traces!") | ||||
| 
 | ||||
|         traces = [] | ||||
|         for stimulus in self.model.get_stimuli_for_fi_curve(): | ||||
|             self.model.simulate(stimulus, self.model.total_stimulation_time_fi_curve) | ||||
|             traces.append(self.model.get_voltage_trace()) | ||||
| 
 | ||||
|         return traces | ||||
| 
 | ||||
|     def get_fi_curve_spiketimes(self): | ||||
|         if not self.model.simulates_spiketimes(): | ||||
|             raise NotImplementedError("Model doesn't simulated spiketimes!") | ||||
| 
 | ||||
|         all_spiketimes = [] | ||||
|         for stimulus in self.model.get_stimuli_for_fi_curve(): | ||||
|             self.model.simulate(stimulus, self.model.total_stimulation_time_fi_curve) | ||||
|             all_spiketimes.append(self.model.get_spiketimes()) | ||||
| 
 | ||||
|         return all_spiketimes | ||||
| 
 | ||||
|     def get_fi_frequency_traces(self): | ||||
|         if not self.model.simulates_frequency(): | ||||
|             raise NotImplementedError("Model doesn't simulated frequency!") | ||||
| 
 | ||||
|         frequency_traces = [] | ||||
|         for stimulus in self.model.get_stimuli_for_fi_curve(): | ||||
|             self.model.simulate(stimulus, self.model.total_stimulation_time_fi_curve) | ||||
|             frequency_traces.append(self.model.get_frequency()) | ||||
| 
 | ||||
|         return frequency_traces | ||||
| 
 | ||||
|     def get_sampling_interval(self): | ||||
|         self.model.get_sampling_interval() | ||||
| 
 | ||||
|     def get_recording_times(self): | ||||
|         raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS") | ||||
| 
 | ||||
|     def traces_available(self) -> bool: | ||||
|         return self.model.simulates_voltage_trace() | ||||
| 
 | ||||
|     def spiketimes_available(self) -> bool: | ||||
|         return self.model.simulates_spiketimes() | ||||
| 
 | ||||
|     def frequencies_available(self) -> bool: | ||||
|         return self.model.simulates_frequency() | ||||
| 
 | ||||
| # TODO #################################### | ||||
| 
 | ||||
| class NixParser(AbstractParser): | ||||
| 
 | ||||
|     def __init__(self, nix_file_path): | ||||
|         self.file_path = nix_file_path | ||||
|         warn("NIX PARSER: NOT YET IMPLEMENTED!") | ||||
| # TODO #################################### | ||||
| 
 | ||||
| 
 | ||||
| def get_parser(data_path) -> AbstractParser: | ||||
|     data_format = __test_for_format__(data_path) | ||||
| @ -505,9 +441,9 @@ def get_parser(data_path) -> AbstractParser: | ||||
|     if data_format == DAT_FORMAT: | ||||
|         return DatParser(data_path) | ||||
|     elif data_format == NIX_FORMAT: | ||||
|         return NixParser(data_path) | ||||
|         raise NotImplementedError("DataParserFactory:get_parser(data_path): nix format doesn't have a parser yet") | ||||
|     elif data_format == MODEL: | ||||
|         return ModelParser(data_path) | ||||
|         raise NotImplementedError("DataParserFactory:get_parser(data_path): Model doesn't have a parser yet") | ||||
|     elif data_format == UNKNOWN: | ||||
|         raise TypeError("DataParserFactory:get_parser(data_path):\nCannot determine type of data for:" + data_path) | ||||
| 
 | ||||
|  | ||||
| @ -9,6 +9,7 @@ from FiCurve import FICurveModel, FICurveCellData | ||||
| from CellData import CellData | ||||
| import functions as fu | ||||
| import Figure_constants as consts | ||||
| from scipy.stats import pearsonr | ||||
| 
 | ||||
| from matplotlib.ticker import FormatStrFormatter | ||||
| 
 | ||||
| @ -39,18 +40,19 @@ def main(): | ||||
|     # quit() | ||||
| 
 | ||||
|     fits_info = get_filtered_fit_info(dir_path, filter=True) | ||||
|     # visualize_tested_correlations(fits_info) | ||||
|     quit() | ||||
|     print("Cells left:", len(fits_info)) | ||||
|     # cell_behaviour, model_behaviour = get_behaviour_values(fits_info) | ||||
|     cell_behaviour, model_behaviour = get_behaviour_values(fits_info) | ||||
|     # plot_cell_model_comp_baseline(cell_behaviour, model_behaviour) | ||||
|     # plot_cell_model_comp_burstiness(cell_behaviour, model_behaviour) | ||||
|     # plot_cell_model_comp_adaption(cell_behaviour, model_behaviour) | ||||
|     plot_cell_model_comp_adaption(cell_behaviour, model_behaviour) | ||||
| 
 | ||||
| 
 | ||||
|     # behaviour_correlations_plot(fits_info) | ||||
|     behaviour_correlations_plot(fits_info) | ||||
|     parameter_correlation_plot(fits_info) | ||||
|     # | ||||
|     # create_parameter_distributions(get_parameter_values(fits_info)) | ||||
|     create_parameter_distributions(get_parameter_values(fits_info, scaled=True, goal_eodf=800), "scaled_to_800_") | ||||
|     # create_parameter_distributions(get_parameter_values(fits_info, scaled=True, goal_eodf=800), "scaled_to_800_") | ||||
|     # errors = calculate_percent_errors(fits_info) | ||||
|     # create_boxplots(errors) | ||||
| 
 | ||||
| @ -82,6 +84,142 @@ def run_all_images(): | ||||
|     example_bad_fi_fits(dir_path) | ||||
| 
 | ||||
| 
 | ||||
| def visualize_tested_correlations(fits_info): | ||||
| 
 | ||||
|     for leave_out in range(1, 11, 1): | ||||
|         significance_count, total_count, labels = test_correlations(fits_info, leave_out, model_values=False) | ||||
|         percentages = significance_count / total_count | ||||
|         border = total_count * 0.01 | ||||
|         fig = plt.figure(tight_layout=True, figsize=consts.FIG_SIZE_MEDIUM_WIDE) | ||||
|         gs = gridspec.GridSpec(2, 2, width_ratios=(1, 1), height_ratios=(5, 0.5), hspace=0.5, wspace=0.4, left=0.2) | ||||
| 
 | ||||
|         ax = fig.add_subplot(gs[0, 0]) | ||||
|         # We want to show all ticks... | ||||
| 
 | ||||
|         ax.imshow(percentages) | ||||
|         ax.set_xticks(np.arange(len(labels))) | ||||
|         ax.set_xticklabels([behaviour_titles[l] for l in labels]) | ||||
|         # remove frame: | ||||
|         ax.spines['top'].set_visible(False) | ||||
|         ax.spines['right'].set_visible(False) | ||||
|         # ... and label them with the respective list entries | ||||
|         ax.set_yticks(np.arange(len(labels))) | ||||
|         ax.set_yticklabels([behaviour_titles[l] for l in labels]) | ||||
| 
 | ||||
|         ax.set_title("Percent: removed {}".format(leave_out)) | ||||
| 
 | ||||
|         # Rotate the tick labels and set their alignment. | ||||
|         plt.setp(ax.get_xticklabels(), rotation=45, ha="right", | ||||
|                  rotation_mode="anchor") | ||||
| 
 | ||||
|         # Loop over data dimensions and create text annotations. | ||||
|         for i in range(len(labels)): | ||||
|             for j in range(len(labels)): | ||||
|                 if percentages[i, j] > 0.5: | ||||
|                     text = ax.text(j, i, "{:.2f}".format(percentages[i, j]), ha="center", va="center", | ||||
|                                    color="black", size=6) | ||||
|                 else: | ||||
|                     text = ax.text(j, i, "{:.2f}".format(percentages[i, j]), ha="center", va="center", | ||||
|                                    color="white", size=6) | ||||
| 
 | ||||
|         ax = fig.add_subplot(gs[0, 1]) | ||||
|         ax.imshow(percentages) | ||||
|         ax.set_xticks(np.arange(len(labels))) | ||||
|         ax.set_xticklabels([behaviour_titles[l] for l in labels]) | ||||
|         # remove frame: | ||||
|         ax.spines['top'].set_visible(False) | ||||
|         ax.spines['right'].set_visible(False) | ||||
|         # ... and label them with the respective list entries | ||||
|         ax.set_yticks(np.arange(len(labels))) | ||||
|         ax.set_yticklabels([behaviour_titles[l] for l in labels]) | ||||
| 
 | ||||
|         ax.set_title("Counts - removed {}".format(leave_out)) | ||||
| 
 | ||||
|         # Rotate the tick labels and set their alignment. | ||||
|         plt.setp(ax.get_xticklabels(), rotation=45, ha="right", | ||||
|                  rotation_mode="anchor") | ||||
| 
 | ||||
|         # Loop over data dimensions and create text annotations. | ||||
|         for i in range(len(labels)): | ||||
|             for j in range(len(labels)): | ||||
|                 if percentages[i, j] > 0.5: | ||||
|                     text = ax.text(j, i, "{:.0f}".format(significance_count[i, j]), ha="center", va="center", | ||||
|                                    color="black", size=6) | ||||
|                 else: | ||||
|                     text = ax.text(j, i, "{:.0f}".format(significance_count[i, j]), ha="center", va="center", | ||||
|                                    color="white", size=6) | ||||
| 
 | ||||
| 
 | ||||
|         ax_col = fig.add_subplot(gs[1, :]) | ||||
|         data = [np.arange(0, 1.001, 0.01)] * 10 | ||||
|         ax_col.set_xticks([0, 25, 50, 75, 100]) | ||||
|         ax_col.set_xticklabels([0, 0.25, 0.5, 0.75, 1]) | ||||
|         ax_col.set_yticks([]) | ||||
|         ax_col.imshow(data) | ||||
|         ax_col.set_xlabel("Correlation Coefficients") | ||||
| 
 | ||||
| 
 | ||||
|         plt.tight_layout() | ||||
|         plt.savefig("figures/consistency_correlations_removed_{}.pdf".format(leave_out)) | ||||
| 
 | ||||
| 
 | ||||
| def test_correlations(fits_info, left_out, model_values=False): | ||||
|     bv_cell, bv_model = get_behaviour_values(fits_info) | ||||
|     # eod_frequencies = [fits_info[cell][3] for cell in sorted(fits_info.keys())] | ||||
|     if model_values: | ||||
|         behaviour_values = bv_model | ||||
|     else: | ||||
|         behaviour_values = bv_cell | ||||
| 
 | ||||
|     labels = ["baseline_frequency", "serial_correlation", "vector_strength", "coefficient_of_variation", | ||||
|               "Burstiness", "f_inf_slope", "f_zero_slope"]  # , "eodf"] | ||||
|     significance_counts = np.zeros((len(labels), len(labels))) | ||||
|     correction_factor = sum(range(len(labels))) | ||||
|     total_count = 0 | ||||
|     for mask in iall_masks(len(behaviour_values["f_inf_slope"]), left_out): | ||||
|         total_count += 1 | ||||
|         idx = np.ones(len(behaviour_values["f_inf_slope"]), dtype=np.int32) | ||||
|         for masked in mask: | ||||
|             idx[masked] = 0 | ||||
|         for i in range(len(labels)): | ||||
|             for j in range(len(labels)): | ||||
|                 if j > i: | ||||
|                     continue | ||||
|                 idx = np.array(idx, dtype=np.bool) | ||||
|                 values_i = np.array(behaviour_values[labels[i]])[idx] | ||||
|                 values_j = np.array(behaviour_values[labels[j]])[idx] | ||||
|                 c, p = pearsonr(values_i, values_j) | ||||
|                 if p*correction_factor < 0.05: | ||||
|                     significance_counts[i, j] += 1 | ||||
| 
 | ||||
|     return significance_counts, total_count, labels | ||||
| 
 | ||||
| 
 | ||||
| def iall_masks(values_count: int, left_out: int): | ||||
|     mask = np.array(range(left_out)) | ||||
| 
 | ||||
|     while True: | ||||
|         if mask[0] == values_count - left_out + 1: | ||||
|             break | ||||
|         yield mask | ||||
| 
 | ||||
|         mask[-1] += 1 | ||||
| 
 | ||||
|         if mask[-1] >= values_count: | ||||
|             idx_to_start = 0 | ||||
|             for i in range(left_out-1): | ||||
|                 if mask[-1 - i] >= values_count-i: | ||||
|                     mask[-1 - (i+1)] += 1 | ||||
|                     idx_to_start -= 1 | ||||
|                 else: | ||||
|                     break | ||||
|             while idx_to_start < 0: | ||||
|                 # print("i:", idx_to_start, "mask:", mask) | ||||
|                 mask[idx_to_start] = mask[idx_to_start -1] + 1 | ||||
|                 idx_to_start += 1 | ||||
|             # print("i:", idx_to_start, "mask:", mask, "end") | ||||
| 
 | ||||
| 
 | ||||
| def dend_tau_and_ref_effect(): | ||||
|     cells = ["2012-12-21-am-invivo-1", "2014-03-19-ad-invivo-1", "2014-03-25-aa-invivo-1"] | ||||
|     cell_type = ["no burster", "burster", "strong burster"] | ||||
| @ -147,10 +285,7 @@ def create_parameter_distributions(par_values, prefix=""): | ||||
|     x_labels = ["[cm]", "[mV]", "[ms]", r"[mV$\sqrt{s}$]", "[ms]", "[mVms]", "[ms]", "[ms]"] | ||||
|     axes_flat = axes.flatten() | ||||
|     for i, l in enumerate(labels): | ||||
|         min_v = min(par_values[l]) * 0.95 | ||||
|         max_v = max(par_values[l]) * 1.05 | ||||
|         step = (max_v - min_v) / 20 | ||||
|         bins = np.arange(min_v, max_v+step, step) | ||||
|         bins = calculate_bins(par_values[l], 20) | ||||
|         if "ms" in x_labels[i]: | ||||
|             bins *= 1000 | ||||
|             par_values[l] = np.array(par_values[l]) * 1000 | ||||
| @ -582,19 +717,17 @@ def plot_cell_model_comp_burstiness(cell_behavior, model_behaviour): | ||||
| 
 | ||||
| 
 | ||||
| def plot_cell_model_comp_adaption(cell_behavior, model_behaviour): | ||||
|     fig = plt.figure(figsize=consts.FIG_SIZE_MEDIUM_WIDE) | ||||
| 
 | ||||
|     fig = plt.figure(figsize=(8, 4)) | ||||
|     gs = fig.add_gridspec(2, 3, width_ratios=[5, 5, 5], height_ratios=[3, 7], | ||||
|                           left=0.1, right=0.95, bottom=0.1, top=0.9, | ||||
|                           wspace=0.4, hspace=0.3) | ||||
|     # ("f_inf_slope", "f_zero_slope") | ||||
|     # Add a gridspec with two rows and two columns and a ratio of 2 to 7 between | ||||
|     # the size of the marginal axes and the main axes in both directions. | ||||
|     # Also adjust the subplot parameters for a square plot. | ||||
|     mpl.rc("axes.formatter", limits=(-5, 2)) | ||||
|     gs = fig.add_gridspec(2, 2, width_ratios=[5, 5], height_ratios=[3, 7], | ||||
|                           left=0.1, right=0.9, bottom=0.1, top=0.9, | ||||
|                           wspace=0.3, hspace=0.3) | ||||
|     mpl.rc("axes.formatter", limits=(-5, 3)) | ||||
|     num_of_bins = 20 | ||||
|     cmap = 'jet' | ||||
|     cell_bursting = cell_behavior["Burstiness"] | ||||
| 
 | ||||
|     # baseline freq plot: | ||||
|     i = 0 | ||||
|     cell = cell_behavior["f_inf_slope"] | ||||
| @ -607,7 +740,7 @@ def plot_cell_model_comp_adaption(cell_behavior, model_behaviour): | ||||
|     ax = fig.add_subplot(gs[1, i]) | ||||
|     ax_histx = fig.add_subplot(gs[0, i], sharex=ax) | ||||
| 
 | ||||
|     scatter_hist(cell, model, ax, ax_histx, behaviour_titles["f_inf_slope"], bins)  # , cmap, cell_bursting) | ||||
|     scatter_hist(cell, model, ax, ax_histx, behaviour_titles["f_inf_slope"], bins) | ||||
|     ax.set_xlabel(r"Cell [Hz]") | ||||
|     ax.set_ylabel(r"Model [Hz]") | ||||
|     ax_histx.set_ylabel("Count") | ||||
| @ -619,12 +752,11 @@ def plot_cell_model_comp_adaption(cell_behavior, model_behaviour): | ||||
|     idx = np.array(cell) < 25000 | ||||
|     cell = np.array(cell)[idx] | ||||
|     model = np.array(model)[idx] | ||||
|     cell_bursting = np.array(cell_bursting)[idx] | ||||
| 
 | ||||
|     idx = np.array(model) < 25000 | ||||
|     cell = np.array(cell)[idx] | ||||
|     model = np.array(model)[idx] | ||||
|     cell_bursting = np.array(cell_bursting)[idx] | ||||
| 
 | ||||
|     print("removed {} values from f_zero_slope plot.".format(length_before - len(cell))) | ||||
| 
 | ||||
|     minimum = min(min(cell), min(model)) | ||||
| @ -634,21 +766,52 @@ def plot_cell_model_comp_adaption(cell_behavior, model_behaviour): | ||||
| 
 | ||||
|     ax = fig.add_subplot(gs[1, i]) | ||||
|     ax_histx = fig.add_subplot(gs[0, i], sharex=ax) | ||||
|     scatter_hist(cell, model, ax, ax_histx, behaviour_titles["f_zero_slope"], bins)  # , cmap, cell_bursting) | ||||
|     scatter_hist(cell, model, ax, ax_histx, behaviour_titles["f_zero_slope"], bins) | ||||
|     ax.set_xlabel("Cell [Hz]") | ||||
|     ax.set_ylabel("Model [Hz]") | ||||
|     ax_histx.set_ylabel("Count") | ||||
|     i += 1 | ||||
| 
 | ||||
|     # ratio: | ||||
|     cell_inf = cell_behavior["f_inf_slope"] | ||||
|     model_inf = model_behaviour["f_inf_slope"] | ||||
|     cell_zero = cell_behavior["f_zero_slope"] | ||||
|     model_zero = model_behaviour["f_zero_slope"] | ||||
| 
 | ||||
|     cell_ratio = [cell_zero[i]/cell_inf[i] for i in range(len(cell_inf))] | ||||
|     model_ratio = [model_zero[i]/model_inf[i] for i in range(len(model_inf))] | ||||
| 
 | ||||
|     idx = np.array(cell_ratio) < 60 | ||||
|     cell_ratio = np.array(cell_ratio)[idx] | ||||
|     model_ratio = np.array(model_ratio)[idx] | ||||
| 
 | ||||
|     idx = np.array(model_ratio) < 60 | ||||
|     cell_ratio = np.array(cell_ratio)[idx] | ||||
|     model_ratio = np.array(model_ratio)[idx] | ||||
| 
 | ||||
|     both_ratios = list(cell_ratio.copy()) | ||||
|     both_ratios.extend(model_ratio) | ||||
| 
 | ||||
|     bins = calculate_bins(both_ratios, num_of_bins) | ||||
| 
 | ||||
|     ax = fig.add_subplot(gs[1, i]) | ||||
|     ax_histx = fig.add_subplot(gs[0, i], sharex=ax) | ||||
|     scatter_hist(cell_ratio, model_ratio, ax, ax_histx, r"$f_0$ / $f_{\infty}$ slope ratio", bins) | ||||
|     ax.set_xlabel("Cell") | ||||
|     ax.set_ylabel("Model") | ||||
|     ax_histx.set_ylabel("Count") | ||||
| 
 | ||||
|     plt.tight_layout() | ||||
| 
 | ||||
|     fig.text(0.085, 0.925, 'A', ha='center', va='center', rotation='horizontal', size=16, family='serif') | ||||
|     fig.text(0.54, 0.925, 'B', ha='center', va='center', rotation='horizontal', size=16, family='serif') | ||||
|     # fig.text(0.085, 0.925, 'A', ha='center', va='center', rotation='horizontal', size=16, family='serif') | ||||
|     # fig.text(0.54, 0.925, 'B', ha='center', va='center', rotation='horizontal', size=16, family='serif') | ||||
| 
 | ||||
|     plt.savefig(consts.SAVE_FOLDER + "fit_adaption_comparison.pdf", transparent=True) | ||||
|     plt.savefig(consts.SAVE_FOLDER + "fit_adaption_comparison_with_ratio.pdf", transparent=True) | ||||
|     plt.close() | ||||
| 
 | ||||
|     mpl.rc("axes.formatter", limits=(-5, 6)) | ||||
| 
 | ||||
| 
 | ||||
| def scatter_hist(cell_values, model_values, ax, ax_histx, behaviour, bins, cmap=None, color_values=None): | ||||
|     # copied from matplotlib | ||||
| 
 | ||||
| @ -665,5 +828,15 @@ def scatter_hist(cell_values, model_values, ax, ax_histx, behaviour, bins, cmap= | ||||
| 
 | ||||
|     ax_histx.set_title(behaviour) | ||||
| 
 | ||||
| 
 | ||||
| def calculate_bins(values, num_of_bins): | ||||
|     minimum = np.min(values) | ||||
|     maximum = np.max(values) | ||||
|     step = (maximum - minimum) / (num_of_bins-1) | ||||
| 
 | ||||
|     bins = np.arange(minimum-0.5*step, maximum + step, step) | ||||
|     return bins | ||||
| 
 | ||||
| 
 | ||||
| if __name__ == '__main__': | ||||
|     main() | ||||
|  | ||||
							
								
								
									
										11
									
								
								Sam.py
									
									
									
									
									
								
							
							
						
						
									
										11
									
								
								Sam.py
									
									
									
									
									
								
							| @ -8,11 +8,18 @@ class SamAnalysis: | ||||
| 
 | ||||
| 
 | ||||
| class SamAnalysisData(SamAnalysis): | ||||
|     pass | ||||
| 
 | ||||
|     def __init__(self, cell_data): | ||||
|         self.cell_data = cell_data | ||||
| 
 | ||||
|         self.mean_mod_freq_responses = [] | ||||
| 
 | ||||
| 
 | ||||
| class SamAnalysisModel(SamAnalysis): | ||||
|     pass | ||||
| 
 | ||||
|     def __init__(self, model): | ||||
|         pass | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
|  | ||||
| @ -12,9 +12,67 @@ import os | ||||
| 
 | ||||
| 
 | ||||
| def main(): | ||||
|     sam_analysis("results/invivo_results/2013-01-08-ad-invivo-1/") | ||||
|     sam_analysis("results/final_2/2011-10-25-ad-invivo-1/") | ||||
| 
 | ||||
|     # plot_traces_with_spiketimes() | ||||
|     # plot_mean_of_cuts() | ||||
| 
 | ||||
|     quit() | ||||
|     modelfit = get_best_fit("results/invivo_results/2013-01-08-ad-invivo-1/", use_comparable_error=False) | ||||
|     modelfit = get_best_fit("results/final_2/2011-10-25-ad-invivo-1/") | ||||
|     cell_data = CellData(modelfit.get_cell_path()) | ||||
| 
 | ||||
|     eod_freq = cell_data.get_eod_frequency() | ||||
|     model = modelfit.get_model() | ||||
| 
 | ||||
|     test_model_response(model, eod_freq, 0.1, np.arange(5, 2500, 5)) | ||||
| 
 | ||||
| 
 | ||||
| def test_model_response(model: LifacNoiseModel, eod_freq, contrast, modulation_frequencies): | ||||
| 
 | ||||
|     stds = [] | ||||
| 
 | ||||
|     for m_freq in modulation_frequencies: | ||||
|         if (1/m_freq) / 10 <= model.parameters["step_size"]: | ||||
|             model.parameters["step_size"] = (1/m_freq) / 10 | ||||
|         step_size = model.parameters["step_size"] | ||||
|         print("mode_freq:", m_freq, "- step size:",  step_size) | ||||
|         stimulus = SAM(eod_freq, contrast / 100, m_freq) | ||||
|         duration = 30 | ||||
|         v1, spikes_model = model.simulate(stimulus, duration) | ||||
|         prob_density_function_model = spiketimes_calculate_pdf(spikes_model, step_size, kernel_width=0.005) | ||||
| 
 | ||||
|         fig, ax = plt.subplots(1, 1) | ||||
|         ax.plot(prob_density_function_model) | ||||
|         ax.set_title("pdf with m_freq: {}".format(int(m_freq))) | ||||
| 
 | ||||
|         plt.savefig("figures/sam/pdf_mfreq_{}.png".format(m_freq)) | ||||
|         plt.close() | ||||
|         stds.append(np.std(prob_density_function_model)) | ||||
| 
 | ||||
|     plt.plot((np.array(modulation_frequencies)) / eod_freq, stds) | ||||
|     plt.show() | ||||
|     plt.close() | ||||
| 
 | ||||
| 
 | ||||
| def plot_traces_with_spiketimes(): | ||||
|     modelfit = get_best_fit("results/final_2/2011-10-25-ad-invivo-1/") | ||||
|     cell_data = modelfit.get_cell_data() | ||||
| 
 | ||||
|     traces = cell_data.parser.__get_traces__("SAM") | ||||
|     # [time_traces, v1_traces, eod_traces, local_eod_traces, stimulus_traces] | ||||
|     sam_spiketimes = cell_data.get_sam_spiketimes() | ||||
|     for i in range(len(traces[0])): | ||||
|         fig, axes = plt.subplots(2, 1, sharex=True) | ||||
|         axes[0].plot(traces[0][i], traces[1][i]) | ||||
|         axes[0].plot(list(sam_spiketimes[i]), list([max(traces[1][i])] * len(sam_spiketimes[i])), 'o') | ||||
|         axes[1].plot(traces[0][i], traces[3][i]) | ||||
| 
 | ||||
|         plt.show() | ||||
|         plt.close() | ||||
| 
 | ||||
| 
 | ||||
| def plot_mean_of_cuts(): | ||||
|     modelfit = get_best_fit("results/final_2/2018-05-08-ac-invivo-1/") | ||||
| 
 | ||||
|     if not os.path.exists(os.path.join(modelfit.get_cell_path(), "samallspikes1.dat")): | ||||
|         print("Cell: {} \n Has no measured sam stimuli.") | ||||
| @ -24,20 +82,6 @@ def main(): | ||||
|     eod_freq = cell_data.get_eod_frequency() | ||||
|     model = modelfit.get_model() | ||||
| 
 | ||||
|     # base_cell = get_baseline_class(cell_data) | ||||
|     # base_model = get_baseline_class(model, cell_data.get_eod_frequency()) | ||||
|     # isis_cell = np.array(base_cell.get_interspike_intervals()) * 1000 | ||||
|     # isi_model = np.array(base_model.get_interspike_intervals()) * 1000 | ||||
| 
 | ||||
|     # bins = np.arange(0, 20, 0.1) | ||||
|     # plt.hist(isi_model, bins=bins, alpha=0.5) | ||||
|     # plt.hist(isis_cell, bins=bins, alpha=0.5) | ||||
|     # plt.show() | ||||
|     # plt.close() | ||||
| 
 | ||||
|     # ficurve = FICurveModel(model, np.arange(-1, 1.1, 0.1), eod_freq) | ||||
|     #  | ||||
|     # ficurve.plot_fi_curve() | ||||
|     durations = cell_data.get_sam_durations() | ||||
|     u_durations = np.unique(durations) | ||||
|     mean_duration = np.mean(durations) | ||||
| @ -56,17 +100,16 @@ def main(): | ||||
|             spikes_dictionary[m_freq] = [spiketimes[i]] | ||||
| 
 | ||||
|     for m_freq in sorted(spikes_dictionary.keys()): | ||||
|         if mean_duration < 2*1/float(m_freq): | ||||
|         if mean_duration < 2 * (1 / float(m_freq)): | ||||
|             print("meep") | ||||
|             continue | ||||
|         stimulus = SAM(eod_freq, contrast/100, m_freq) | ||||
|         v1, spikes_model = model.simulate(stimulus, mean_duration * 4) | ||||
|         stimulus = SAM(eod_freq, contrast / 100, m_freq) | ||||
|         v1, spikes_model = model.simulate(stimulus, 4) | ||||
|         prob_density_function_model = spiketimes_calculate_pdf(spikes_model, step_size) | ||||
|         # plt.plot(prob_density_function_model) | ||||
|         # plt.show() | ||||
|         # plt.close() | ||||
| 
 | ||||
|         fig, axes = plt.subplots(1, 4) | ||||
|         cuts = cut_pdf_into_periods(prob_density_function_model, 1/float(m_freq), step_size) | ||||
|         start_idx = int(2 / step_size) | ||||
|         cuts = cut_pdf_into_periods(prob_density_function_model[start_idx:], 1 / float(m_freq), step_size) | ||||
|         for c in cuts: | ||||
|             axes[0].plot(c, color="gray", alpha=0.2) | ||||
|         axes[0].set_title("model") | ||||
| @ -77,14 +120,13 @@ def main(): | ||||
|         for spikes_cell in spikes_dictionary[m_freq]: | ||||
|             prob_density_cell = spiketimes_calculate_pdf(spikes_cell[0], step_size) | ||||
| 
 | ||||
|             if len(prob_density_cell) < 3 * (eod_freq / step_size): | ||||
|                 continue | ||||
|             cuts_cell = cut_pdf_into_periods(prob_density_cell, 1/float(m_freq), step_size) | ||||
|             cuts_cell = cut_pdf_into_periods(prob_density_cell, 1 / float(m_freq), step_size) | ||||
|             for c in cuts_cell: | ||||
|                 axes[1].plot(c, color="gray", alpha=0.15) | ||||
|             print(cuts_cell.shape) | ||||
|             means_cell.append(np.mean(cuts_cell, axis=0)) | ||||
|         if len(means_cell) == 0: | ||||
|             print("means cell length zero") | ||||
|             continue | ||||
|         means_cell = np.array(means_cell) | ||||
|         total_mean_cell = np.mean(means_cell, axis=0) | ||||
| @ -92,7 +134,7 @@ def main(): | ||||
|         axes[1].plot(total_mean_cell, color="black") | ||||
| 
 | ||||
|         axes[2].set_title("difference") | ||||
|         diff = [(total_mean_cell[i]-mean_model[i]) for i in range(len(total_mean_cell))] | ||||
|         diff = [(total_mean_cell[i] - mean_model[i]) for i in range(len(total_mean_cell))] | ||||
|         axes[2].plot(diff) | ||||
| 
 | ||||
|         axes[3].plot(total_mean_cell) | ||||
| @ -129,9 +171,11 @@ def sam_analysis(fit_path): | ||||
|     delta_freqs = cell_data.get_sam_delta_frequencies() | ||||
|     u_delta_freqs = np.unique(delta_freqs) | ||||
| 
 | ||||
|     all_data = [] | ||||
|     cell_stds = [] | ||||
|     model_stds = [] | ||||
|     for mod_freq in sorted(u_delta_freqs): | ||||
|         # TODO problem of cutting the pdf as in some cases the pdf is shorter than 1 modulation frequency period! | ||||
|         #  length info wrong ? always at least one period? | ||||
| 
 | ||||
|         if 1/mod_freq > durations[0] / 4: | ||||
|             print("skipped mod_freq: {}".format(mod_freq)) | ||||
| @ -152,52 +196,92 @@ def sam_analysis(fit_path): | ||||
|                 print("There are more spiketimes in one 'point'! Only the first was used! ") | ||||
|             spikes = spiketimes[i][0] | ||||
| 
 | ||||
| 
 | ||||
|             cell_pdf = spiketimes_calculate_pdf(spikes, step_size) | ||||
| 
 | ||||
|             cell_cuts = cut_pdf_into_periods(cell_pdf, 1/mod_freq, step_size, factor=1.1, use_all=True) | ||||
|             cell_cuts = cut_pdf_into_periods(cell_pdf, 1/mod_freq, step_size, factor=1.0) | ||||
|             cell_mean = np.mean(cell_cuts, axis=0) | ||||
|             cell_means.append(cell_mean) | ||||
|             # fig, axes = plt.subplots(1, 2) | ||||
|             # for c in cell_cuts: | ||||
|             #     axes[0].plot(c, color="grey", alpha=0.2) | ||||
|             # axes[0].plot(np.mean(cell_means, axis=0), color="black") | ||||
| 
 | ||||
|             stimulus = SAM(eod_freq, contrasts[i] / 100, mod_freq) | ||||
|             v1, spikes_model = model.simulate(stimulus, durations[i] * 4) | ||||
|             model_pdf = spiketimes_calculate_pdf(spikes_model, step_size) | ||||
|             model_cuts = cut_pdf_into_periods(model_pdf, 1/mod_freq, step_size, factor=1.1) | ||||
|             model_cuts = cut_pdf_into_periods(model_pdf, 1/mod_freq, step_size, factor=1.0) | ||||
|             model_mean = np.mean(model_cuts, axis=0) | ||||
|             model_means.append(model_mean) | ||||
| 
 | ||||
|             # for c in model_cuts: | ||||
|             #     axes[1].plot(c, color="grey", alpha=0.2) | ||||
|             # axes[1].plot(np.mean(model_cuts, axis=0), color="black") | ||||
|             # plt.title("mod_freq: {}".format(mod_freq)) | ||||
|             # plt.show() | ||||
|             # plt.close() | ||||
|         final_cell_mean = np.mean(cell_means, axis=0) | ||||
|         final_model_mean = np.mean(model_means, axis=0) | ||||
|         cell_stds.append(np.std(final_cell_mean)) | ||||
|         model_stds.append(np.std(final_model_mean)) | ||||
|         final_model_mean_phase_corrected = correct_phase(final_cell_mean, final_model_mean, step_size) | ||||
| 
 | ||||
| 
 | ||||
|         fig, axes = plt.subplots(1, 4) | ||||
|         # PLOT EVERY MOD FREQ | ||||
|         fig, axes = plt.subplots(1, 5, figsize=(15, 5), sharex=True) | ||||
|         for c in cell_means: | ||||
|             axes[0].plot(c, color="grey", alpha=0.2) | ||||
|         axes[0].plot(np.mean(cell_means, axis=0), color="black") | ||||
|         axes[0].set_title("Cell response") | ||||
|         axis_cell = axes[0].axis() | ||||
| 
 | ||||
|         for m in model_means: | ||||
|             axes[1].plot(m, color="grey", alpha=0.2) | ||||
|         axes[1].plot(np.mean(model_means, axis=0), color="black") | ||||
|         axes[1].set_title("Model response") | ||||
|         axis_model = axes[1].axis() | ||||
|         ylim_top = max(axis_cell[3], axis_model[3]) | ||||
|         axes[1].set_ylim(0, ylim_top) | ||||
|         axes[0].set_ylim(0, ylim_top) | ||||
|         axes[2].set_ylim(0, ylim_top) | ||||
| 
 | ||||
|         axes[2].plot((np.mean(model_means, axis=0) - np.mean(cell_means, axis=0)) / np.mean(model_means, axis=0)) | ||||
| 
 | ||||
|         plt.title("modulation frequency: {}".format(mod_freq)) | ||||
|         axes[2].plot(final_cell_mean, label="cell") | ||||
|         axes[2].plot(final_model_mean, label="model") | ||||
|         axes[2].plot(final_model_mean_phase_corrected, label="model p-cor") | ||||
|         axes[2].legend() | ||||
|         axes[2].set_title("cell-model overlapped") | ||||
|         axes[3].plot((final_model_mean - final_cell_mean) / final_cell_mean, label="normal") | ||||
|         axes[3].plot((final_model_mean_phase_corrected- final_cell_mean) / final_cell_mean, label="phase cor") | ||||
|         axes[3].set_title("rel. error") | ||||
|         axes[3].legend() | ||||
|         axes[4].plot(final_model_mean - final_cell_mean, label="normal") | ||||
|         axes[4].plot(final_model_mean_phase_corrected - final_cell_mean, label="phase cor") | ||||
|         axes[4].set_title("abs. error (Hz)") | ||||
|         axes[4].legend() | ||||
| 
 | ||||
|         fig.suptitle("modulation frequency: {}".format(mod_freq)) | ||||
| 
 | ||||
|         # plt.tight_layout() | ||||
|         plt.show() | ||||
|         plt.close() | ||||
| 
 | ||||
|     fig, ax = plt.subplots(1, 1) | ||||
| 
 | ||||
|     ax.plot(u_delta_freqs, cell_stds, label="cell stds") | ||||
|     ax.plot(u_delta_freqs, model_stds, label="model stds") | ||||
|     ax.set_title("response modulation depth") | ||||
|     ax.set_xlabel("Modulation frequency") | ||||
|     ax.set_ylabel("STD") | ||||
|     ax.legend() | ||||
|     plt.show() | ||||
|     plt.close() | ||||
| 
 | ||||
| 
 | ||||
| def correct_phase(cell_mean, model_mean, step_size): | ||||
| 
 | ||||
|     # test for every 0.2 ms roll in the total time: | ||||
|     lowest_err = np.inf | ||||
|     roll_idx = 0 | ||||
|     for i in range(int(len(cell_mean) * step_size * 1000) * 5): | ||||
|         roll_by = int((i / 5 / 1000) / step_size) | ||||
|         rolled = np.roll(model_mean, roll_by) | ||||
|         # rms = np.sqrt(np.mean(np.power((cell_mean - rolled), 2))) | ||||
|         abs = np.sum(np.abs(cell_mean-rolled)) | ||||
|         if abs < lowest_err: | ||||
|             lowest_err = abs | ||||
|             roll_idx = roll_by | ||||
| 
 | ||||
|     return np.roll(model_mean, roll_idx) | ||||
| 
 | ||||
| 
 | ||||
| def generate_pdf(model, stimulus, trials=4, sim_length=3, kernel_width=0.005): | ||||
| 
 | ||||
| @ -221,7 +305,7 @@ def generate_pdf(model, stimulus, trials=4, sim_length=3, kernel_width=0.005): | ||||
|     return mean_rate | ||||
| 
 | ||||
| 
 | ||||
| def spiketimes_calculate_pdf(spikes, step_size, kernel_width=0.005): | ||||
| def spiketimes_calculate_pdf(spikes, step_size, kernel_width=0.001): | ||||
|     length = int(spikes[len(spikes)-1] / step_size)+1 | ||||
|     binary = np.zeros(length) | ||||
|     spikes = [int(s / step_size) for s in spikes] | ||||
| @ -234,7 +318,11 @@ def spiketimes_calculate_pdf(spikes, step_size, kernel_width=0.005): | ||||
|     return rate | ||||
| 
 | ||||
| 
 | ||||
| def cut_pdf_into_periods(pdf, period, step_size, factor=1.5, use_all=False): | ||||
| def cut_pdf_into_periods(pdf, period, step_size, factor=1.5): | ||||
| 
 | ||||
|     if period < 0: | ||||
|         print("cut_pdf_into_periods(): Period was negative! Absolute value taken to continue") | ||||
|         period = abs(period) | ||||
| 
 | ||||
|     if period / step_size > len(pdf): | ||||
|         return [pdf] | ||||
|  | ||||
| @ -1,6 +1,5 @@ | ||||
| from stimuli.AbstractStimulus import AbstractStimulus | ||||
| import numpy as np | ||||
| from numba import jit, njit | ||||
| from warnings import warn | ||||
| 
 | ||||
| 
 | ||||
| @ -63,7 +62,6 @@ def convert_to_array(carrier_freq, amplitude, modulation_freq, contrast, start_t | ||||
|         else: | ||||
|             am_end = time_start + total_time | ||||
| 
 | ||||
| 
 | ||||
|         idx_start = (am_start - time_start) / step_size_s | ||||
|         idx_end = (am_end - time_start) / step_size_s | ||||
| 
 | ||||
| @ -80,46 +78,4 @@ def convert_to_array(carrier_freq, amplitude, modulation_freq, contrast, start_t | ||||
|         values = full_carrier * amplitude | ||||
|         values[idx_start:idx_end] = values[idx_start:idx_end]*am | ||||
| 
 | ||||
|         return values | ||||
| 
 | ||||
| 
 | ||||
|     # # if the whole stimulus time has the amplitude modulation just built it at once; | ||||
|     # if time_start >= start_time and start_time+duration < time_start+total_time: | ||||
|     #     carrier = np.sin(2 * np.pi * carrier_freq * np.arange(start_time, total_time - start_time, step_size_s)) | ||||
|     #     modulation = 1 + contrast * np.sin(2 * np.pi * modulation_freq * np.arange(start_time, total_time - start_time, step_size_s)) | ||||
|     #     values = amplitude * carrier * modulation | ||||
|     #     return values | ||||
|     # | ||||
|     # # if it is split into parts with and without amplitude modulation built it in parts: | ||||
|     # values = np.array([]) | ||||
|     # | ||||
|     # # there is some time before the modulation starts: | ||||
|     # if time_start < start_time: | ||||
|     #     carrier_before_am = np.sin(2 * np.pi * carrier_freq * np.arange(time_start, start_time, step_size_s)) | ||||
|     #     values = np.concatenate((values, amplitude * carrier_before_am)) | ||||
|     # | ||||
|     # # there is at least a second part of the stimulus that contains the amplitude: | ||||
|     # # time starts before the end of the am and ends after it was started | ||||
|     # if time_start < start_time+duration and time_start+total_time > start_time: | ||||
|     #     if duration is np.inf: | ||||
|     # | ||||
|     #         carrier_during_am = np.sin( | ||||
|     #             2 * np.pi * carrier_freq * np.arange(start_time, time_start + total_time, step_size_s)) | ||||
|     #         am = 1 + contrast * np.sin( | ||||
|     #             2 * np.pi * modulation_freq * np.arange(start_time, time_start + total_time, step_size_s)) | ||||
|     #     else: | ||||
|     #         carrier_during_am = np.sin( | ||||
|     #             2 * np.pi * carrier_freq * np.arange(start_time, start_time + duration, step_size_s)) | ||||
|     #         am = 1 + contrast * np.sin( | ||||
|     #             2 * np.pi * modulation_freq * np.arange(start_time, start_time + duration, step_size_s)) | ||||
|     #     values = np.concatenate((values, amplitude * am * carrier_during_am)) | ||||
|     # | ||||
|     # else: | ||||
|     #     if contrast != 0: | ||||
|     #         print("Given stimulus time parameters (start, total) result in no part of it containing the amplitude modulation!") | ||||
|     # | ||||
|     # if time_start+total_time > start_time+duration: | ||||
|     #     carrier_after_am = np.sin(2 * np.pi * carrier_freq * np.arange(start_time + duration, time_start + total_time, step_size_s)) | ||||
|     #     values = np.concatenate((values, amplitude*carrier_after_am)) | ||||
|     # | ||||
|     # return values | ||||
|         return values | ||||
							
								
								
									
										68
									
								
								test.py
									
									
									
									
									
								
							
							
						
						
									
										68
									
								
								test.py
									
									
									
									
									
								
							| @ -22,67 +22,15 @@ from matplotlib import gridspec | ||||
| # from plottools.axes import labelaxes_params | ||||
| 
 | ||||
| 
 | ||||
| directory = "data/final" | ||||
| count = 0 | ||||
| for cell in sorted(os.listdir(directory)): | ||||
|     cell_dir = os.path.join(directory, cell) | ||||
|     if os.path.exists(cell_dir + "/samallspikes1.dat"): | ||||
|         print(cell) | ||||
|         count += 1 | ||||
| 
 | ||||
| cell = "data/final/2018-05-08-ab-invivo-1/" | ||||
| cell_data = CellData(cell) | ||||
| step = cell_data.get_sampling_interval() | ||||
| v1 = cell_data.get_base_traces(cell_data.V1)[0] | ||||
| time = cell_data.get_base_traces(cell_data.TIME)[0] | ||||
| spiketimes = cell_data.get_base_spikes()[0] | ||||
| start = 0 | ||||
| duration = 25 | ||||
| 
 | ||||
| fig, ax = plt.subplots(1, 1) | ||||
| ax.plot((np.array(time[:int(duration/step)]) - start) * 1000, v1[:int(duration/step)]) | ||||
| ax.eventplot([s * 1000 for s in spiketimes if start < s < start + duration], | ||||
|              lineoffsets=max(v1[:int(duration/step)])+1.25, color="black", linelengths=2) | ||||
| 
 | ||||
| plt.show() | ||||
| plt.close() | ||||
| quit() | ||||
| 
 | ||||
| # sp = self.spikes(index) | ||||
| # binary = np.zeros(t.shape) | ||||
| # spike_indices = ((sp - t[0]) / dt).astype(int) | ||||
| # binary[spike_indices[(spike_indices >= 0) & (spike_indices < len(binary))]] = 1 | ||||
| # g = gaussian_kernel(kernel_width, dt) | ||||
| # rate = np.convolve(binary, g, mode='same') | ||||
| 
 | ||||
| fit = get_best_fit("results/final_2/2012-12-21-am-invivo-1/") | ||||
| model = fit.get_model() | ||||
| cell_data = fit.get_cell_data() | ||||
| eodf = cell_data.get_eod_frequency() | ||||
| parameters = model.parameters | ||||
| 
 | ||||
| time_param_keys = ["refractory_period", "tau_a", "mem_tau", "dend_tau"] | ||||
| contrasts = np.arange(-0.3, 0.3, 0.05) | ||||
| baseline_normal = BaselineModel(model, eodf) | ||||
| fi_curve_normal = FICurveModel(model, contrasts, eodf) | ||||
| fi_curve_normal.plot_fi_curve() | ||||
| normal_isis = baseline_normal.get_interspike_intervals() * eodf | ||||
| normal_bins = np.arange(0, 0.05, 0.0001) * eodf | ||||
| 
 | ||||
| factor = 1.1 | ||||
| scaled_eodf = eodf * factor | ||||
| scaled_model = model.get_model_copy() | ||||
| 
 | ||||
| for key in time_param_keys: | ||||
|     scaled_model.parameters[key] = parameters[key] / factor | ||||
| 
 | ||||
| baseline_scaled = BaselineModel(scaled_model, scaled_eodf) | ||||
| fi_curve_scaled = FICurveModel(scaled_model, contrasts, scaled_eodf) | ||||
| fi_curve_scaled.plot_fi_curve() | ||||
| scaled_isis = np.array(baseline_scaled.get_interspike_intervals()) * scaled_eodf | ||||
| scaled_bins = np.arange(0, 0.05, 0.0001) * scaled_eodf | ||||
| 
 | ||||
| # plt.hist(normal_isis, bins=normal_bins, alpha=0.5, label="normal") | ||||
| # plt.hist(scaled_isis, bins=scaled_bins, alpha=0.5, label="scaled") | ||||
| # plt.legend() | ||||
| # plt.show() | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| print(count) | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
|  | ||||
							
								
								
									
										
											BIN
										
									
								
								tests/consistency_correlations_removed_1.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								tests/consistency_correlations_removed_1.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								tests/consistency_correlations_removed_2.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								tests/consistency_correlations_removed_2.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								tests/consistency_correlations_removed_3.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								tests/consistency_correlations_removed_3.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								tests/consistency_correlations_removed_4.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								tests/consistency_correlations_removed_4.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							| @ -511,7 +511,7 @@ Before the parameter distributions (fig. \ref{fig:parameter_distributions}) and | ||||
| 
 | ||||
| 
 | ||||
| \begin{figure}[H] | ||||
| \includegraphics{figures/parameter_distributions.pdf} | ||||
| \includegraphics{figures/scaled_to_800_parameter_distributions.pdf} | ||||
| \caption{\label{fig:parameter_distributions} Distributions of all eight model parameters with the time scaled for all models so their driving EOD frequency has 800\,Hz. \textbf{A}: input scaling $\alpha$, \textbf{B}: Bias current $I_{Bias}$, \textbf{C}: membrane time constant $\tau_m$, \textbf{D}: noise strength $\sqrt{2D}$, \textbf{E}: adaption time constant $\tau_A$, \textbf{F}: adaption strength $\Delta_A$, \textbf{G}: time constant of the dendritic low pass filter $\tau_{dend}$, \textbf{H}: refractory period $t_{ref}$} | ||||
| \end{figure} | ||||
| 
 | ||||
|  | ||||
							
								
								
									
										
											BIN
										
									
								
								thesis/figures/fit_adaption_comparison_with_ratio.pdf
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								thesis/figures/fit_adaption_comparison_with_ratio.pdf
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							
		Loading…
	
		Reference in New Issue
	
	Block a user