P-unit_model/stimuli/SinusAmplitudeModulation.py
2020-12-07 10:19:26 +01:00

81 lines
3.1 KiB
Python

from stimuli.AbstractStimulus import AbstractStimulus
import numpy as np
from warnings import warn
class SinusAmplitudeModulationStimulus(AbstractStimulus):
def __init__(self, carrier_frequency, contrast, modulation_frequency, start_time=0, duration=np.inf, amplitude=1):
self.contrast = contrast
self.modulation_frequency = modulation_frequency
self.amplitude = amplitude
self.carrier_frequency = carrier_frequency
self.start_time = start_time
self.duration = duration
def value_at_time_in_s(self, time_point):
carrier = np.sin(2 * np.pi * self.carrier_frequency * time_point)
if time_point < self.start_time or time_point > self.start_time + self.duration:
return self.amplitude * carrier
am = (1 + self.contrast * np.sin(2*np.pi*self.modulation_frequency * time_point))
return self.amplitude * am * carrier
def get_stimulus_start_s(self):
return self.start_time
def get_stimulus_duration_s(self):
return self.duration
def get_amplitude(self):
return self.contrast
def as_array(self, time_start, total_time, step_size):
carrier = self.carrier_frequency
amp = self.amplitude
mod_freq = self.modulation_frequency
contrast = self.contrast
start_time = self.start_time
duration = self.duration
values = convert_to_array(carrier, amp, mod_freq, contrast, start_time, duration, time_start, total_time, step_size)
return values
# @jit(nopython=True) # makes it slower?
def convert_to_array(carrier_freq, amplitude, modulation_freq, contrast, start_time, duration, time_start, total_time, step_size_s):
full_time = np.arange(time_start, time_start + total_time, step_size_s)
full_carrier = np.sin(2 * np.pi * carrier_freq * full_time)
if start_time > time_start+duration or start_time+duration < time_start:
return full_carrier * amplitude
else:
if start_time >= time_start:
am_start = start_time
else:
am_start = time_start
if time_start + total_time >= start_time + duration:
am_end = start_time + duration
else:
am_end = time_start + total_time
idx_start = (am_start - time_start) / step_size_s
idx_end = (am_end - time_start) / step_size_s
if idx_start != round(idx_start) or idx_end != round(idx_end):
warn("Didn't calculate integers when searching the start and end index. start: {} end: {}".format(idx_start, idx_end))
# raise ValueError("Didn't calculate integers when searching the start and end index. start:", idx_start, "end:", idx_end)
# print("am_start: {:.0f}, am_end: {:.0f}, length: {:.0f}".format(am_start, am_end, am_end-am_start))
idx_start = int(idx_start)
idx_end = int(idx_end)
am = 1 + contrast * np.sin(2 * np.pi * modulation_freq * full_time[idx_start:idx_end])
values = full_carrier * amplitude
values[idx_start:idx_end] = values[idx_start:idx_end]*am
return values