This commit is contained in:
a.ott 2020-12-07 10:19:26 +01:00
parent 5d009b29d7
commit f08f962bf3
15 changed files with 370 additions and 262 deletions

View File

@ -291,7 +291,14 @@ class DatParser(AbstractParser):
else:
print("DataParser Dat: Unknown time notation:", key[1][0])
if len(metadata) != 0:
if not "----- Stimulus -------------------------------------------------------" in metadata[0].keys():
eod_freq = float(metadata[0]["EOD rate"][:-2]) # in Hz
trans_amplitude = metadata[0]["trans. amplitude"][:-2] # in mV
duration = float(metadata[0]["duration"][:-2]) * factor # normally saved in ms? so change it with the factor
contrast = float(metadata[0]["contrast"][:-1]) # in percent
delta_f = float(metadata[0]["deltaf"][:-2])
else:
stimulus_dict = metadata[0]["----- Stimulus -------------------------------------------------------"]
analysis_dict = metadata[0]["----- Analysis -------------------------------------------------------"]
eod_freq = float(metadata[0]["EOD rate"][:-2]) # in Hz
@ -427,77 +434,6 @@ class DatParser(AbstractParser):
# if not exists(self.sam_file):
# raise RuntimeError(self.sam_file + " file doesn't exist!")
# MODEL PARSER: ------------------------------
class ModelParser(AbstractParser):
def __init__(self, model: AbstractModel):
self.model = model
def cell_get_metadata(self):
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
def get_baseline_traces(self):
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
def get_fi_curve_traces(self):
if not self.model.simulates_voltage_trace():
raise NotImplementedError("Model doesn't simulated voltage traces!")
traces = []
for stimulus in self.model.get_stimuli_for_fi_curve():
self.model.simulate(stimulus, self.model.total_stimulation_time_fi_curve)
traces.append(self.model.get_voltage_trace())
return traces
def get_fi_curve_spiketimes(self):
if not self.model.simulates_spiketimes():
raise NotImplementedError("Model doesn't simulated spiketimes!")
all_spiketimes = []
for stimulus in self.model.get_stimuli_for_fi_curve():
self.model.simulate(stimulus, self.model.total_stimulation_time_fi_curve)
all_spiketimes.append(self.model.get_spiketimes())
return all_spiketimes
def get_fi_frequency_traces(self):
if not self.model.simulates_frequency():
raise NotImplementedError("Model doesn't simulated frequency!")
frequency_traces = []
for stimulus in self.model.get_stimuli_for_fi_curve():
self.model.simulate(stimulus, self.model.total_stimulation_time_fi_curve)
frequency_traces.append(self.model.get_frequency())
return frequency_traces
def get_sampling_interval(self):
self.model.get_sampling_interval()
def get_recording_times(self):
raise NotImplementedError("NOT YET OVERRIDDEN FROM ABSTRACT CLASS")
def traces_available(self) -> bool:
return self.model.simulates_voltage_trace()
def spiketimes_available(self) -> bool:
return self.model.simulates_spiketimes()
def frequencies_available(self) -> bool:
return self.model.simulates_frequency()
# TODO ####################################
class NixParser(AbstractParser):
def __init__(self, nix_file_path):
self.file_path = nix_file_path
warn("NIX PARSER: NOT YET IMPLEMENTED!")
# TODO ####################################
def get_parser(data_path) -> AbstractParser:
data_format = __test_for_format__(data_path)
@ -505,9 +441,9 @@ def get_parser(data_path) -> AbstractParser:
if data_format == DAT_FORMAT:
return DatParser(data_path)
elif data_format == NIX_FORMAT:
return NixParser(data_path)
raise NotImplementedError("DataParserFactory:get_parser(data_path): nix format doesn't have a parser yet")
elif data_format == MODEL:
return ModelParser(data_path)
raise NotImplementedError("DataParserFactory:get_parser(data_path): Model doesn't have a parser yet")
elif data_format == UNKNOWN:
raise TypeError("DataParserFactory:get_parser(data_path):\nCannot determine type of data for:" + data_path)

View File

@ -9,6 +9,7 @@ from FiCurve import FICurveModel, FICurveCellData
from CellData import CellData
import functions as fu
import Figure_constants as consts
from scipy.stats import pearsonr
from matplotlib.ticker import FormatStrFormatter
@ -39,18 +40,19 @@ def main():
# quit()
fits_info = get_filtered_fit_info(dir_path, filter=True)
# visualize_tested_correlations(fits_info)
quit()
print("Cells left:", len(fits_info))
# cell_behaviour, model_behaviour = get_behaviour_values(fits_info)
cell_behaviour, model_behaviour = get_behaviour_values(fits_info)
# plot_cell_model_comp_baseline(cell_behaviour, model_behaviour)
# plot_cell_model_comp_burstiness(cell_behaviour, model_behaviour)
# plot_cell_model_comp_adaption(cell_behaviour, model_behaviour)
plot_cell_model_comp_adaption(cell_behaviour, model_behaviour)
# behaviour_correlations_plot(fits_info)
behaviour_correlations_plot(fits_info)
parameter_correlation_plot(fits_info)
#
# create_parameter_distributions(get_parameter_values(fits_info))
create_parameter_distributions(get_parameter_values(fits_info, scaled=True, goal_eodf=800), "scaled_to_800_")
# create_parameter_distributions(get_parameter_values(fits_info, scaled=True, goal_eodf=800), "scaled_to_800_")
# errors = calculate_percent_errors(fits_info)
# create_boxplots(errors)
@ -82,6 +84,142 @@ def run_all_images():
example_bad_fi_fits(dir_path)
def visualize_tested_correlations(fits_info):
for leave_out in range(1, 11, 1):
significance_count, total_count, labels = test_correlations(fits_info, leave_out, model_values=False)
percentages = significance_count / total_count
border = total_count * 0.01
fig = plt.figure(tight_layout=True, figsize=consts.FIG_SIZE_MEDIUM_WIDE)
gs = gridspec.GridSpec(2, 2, width_ratios=(1, 1), height_ratios=(5, 0.5), hspace=0.5, wspace=0.4, left=0.2)
ax = fig.add_subplot(gs[0, 0])
# We want to show all ticks...
ax.imshow(percentages)
ax.set_xticks(np.arange(len(labels)))
ax.set_xticklabels([behaviour_titles[l] for l in labels])
# remove frame:
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
# ... and label them with the respective list entries
ax.set_yticks(np.arange(len(labels)))
ax.set_yticklabels([behaviour_titles[l] for l in labels])
ax.set_title("Percent: removed {}".format(leave_out))
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
# Loop over data dimensions and create text annotations.
for i in range(len(labels)):
for j in range(len(labels)):
if percentages[i, j] > 0.5:
text = ax.text(j, i, "{:.2f}".format(percentages[i, j]), ha="center", va="center",
color="black", size=6)
else:
text = ax.text(j, i, "{:.2f}".format(percentages[i, j]), ha="center", va="center",
color="white", size=6)
ax = fig.add_subplot(gs[0, 1])
ax.imshow(percentages)
ax.set_xticks(np.arange(len(labels)))
ax.set_xticklabels([behaviour_titles[l] for l in labels])
# remove frame:
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
# ... and label them with the respective list entries
ax.set_yticks(np.arange(len(labels)))
ax.set_yticklabels([behaviour_titles[l] for l in labels])
ax.set_title("Counts - removed {}".format(leave_out))
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
# Loop over data dimensions and create text annotations.
for i in range(len(labels)):
for j in range(len(labels)):
if percentages[i, j] > 0.5:
text = ax.text(j, i, "{:.0f}".format(significance_count[i, j]), ha="center", va="center",
color="black", size=6)
else:
text = ax.text(j, i, "{:.0f}".format(significance_count[i, j]), ha="center", va="center",
color="white", size=6)
ax_col = fig.add_subplot(gs[1, :])
data = [np.arange(0, 1.001, 0.01)] * 10
ax_col.set_xticks([0, 25, 50, 75, 100])
ax_col.set_xticklabels([0, 0.25, 0.5, 0.75, 1])
ax_col.set_yticks([])
ax_col.imshow(data)
ax_col.set_xlabel("Correlation Coefficients")
plt.tight_layout()
plt.savefig("figures/consistency_correlations_removed_{}.pdf".format(leave_out))
def test_correlations(fits_info, left_out, model_values=False):
bv_cell, bv_model = get_behaviour_values(fits_info)
# eod_frequencies = [fits_info[cell][3] for cell in sorted(fits_info.keys())]
if model_values:
behaviour_values = bv_model
else:
behaviour_values = bv_cell
labels = ["baseline_frequency", "serial_correlation", "vector_strength", "coefficient_of_variation",
"Burstiness", "f_inf_slope", "f_zero_slope"] # , "eodf"]
significance_counts = np.zeros((len(labels), len(labels)))
correction_factor = sum(range(len(labels)))
total_count = 0
for mask in iall_masks(len(behaviour_values["f_inf_slope"]), left_out):
total_count += 1
idx = np.ones(len(behaviour_values["f_inf_slope"]), dtype=np.int32)
for masked in mask:
idx[masked] = 0
for i in range(len(labels)):
for j in range(len(labels)):
if j > i:
continue
idx = np.array(idx, dtype=np.bool)
values_i = np.array(behaviour_values[labels[i]])[idx]
values_j = np.array(behaviour_values[labels[j]])[idx]
c, p = pearsonr(values_i, values_j)
if p*correction_factor < 0.05:
significance_counts[i, j] += 1
return significance_counts, total_count, labels
def iall_masks(values_count: int, left_out: int):
mask = np.array(range(left_out))
while True:
if mask[0] == values_count - left_out + 1:
break
yield mask
mask[-1] += 1
if mask[-1] >= values_count:
idx_to_start = 0
for i in range(left_out-1):
if mask[-1 - i] >= values_count-i:
mask[-1 - (i+1)] += 1
idx_to_start -= 1
else:
break
while idx_to_start < 0:
# print("i:", idx_to_start, "mask:", mask)
mask[idx_to_start] = mask[idx_to_start -1] + 1
idx_to_start += 1
# print("i:", idx_to_start, "mask:", mask, "end")
def dend_tau_and_ref_effect():
cells = ["2012-12-21-am-invivo-1", "2014-03-19-ad-invivo-1", "2014-03-25-aa-invivo-1"]
cell_type = ["no burster", "burster", "strong burster"]
@ -147,10 +285,7 @@ def create_parameter_distributions(par_values, prefix=""):
x_labels = ["[cm]", "[mV]", "[ms]", r"[mV$\sqrt{s}$]", "[ms]", "[mVms]", "[ms]", "[ms]"]
axes_flat = axes.flatten()
for i, l in enumerate(labels):
min_v = min(par_values[l]) * 0.95
max_v = max(par_values[l]) * 1.05
step = (max_v - min_v) / 20
bins = np.arange(min_v, max_v+step, step)
bins = calculate_bins(par_values[l], 20)
if "ms" in x_labels[i]:
bins *= 1000
par_values[l] = np.array(par_values[l]) * 1000
@ -582,19 +717,17 @@ def plot_cell_model_comp_burstiness(cell_behavior, model_behaviour):
def plot_cell_model_comp_adaption(cell_behavior, model_behaviour):
fig = plt.figure(figsize=consts.FIG_SIZE_MEDIUM_WIDE)
fig = plt.figure(figsize=(8, 4))
gs = fig.add_gridspec(2, 3, width_ratios=[5, 5, 5], height_ratios=[3, 7],
left=0.1, right=0.95, bottom=0.1, top=0.9,
wspace=0.4, hspace=0.3)
# ("f_inf_slope", "f_zero_slope")
# Add a gridspec with two rows and two columns and a ratio of 2 to 7 between
# the size of the marginal axes and the main axes in both directions.
# Also adjust the subplot parameters for a square plot.
mpl.rc("axes.formatter", limits=(-5, 2))
gs = fig.add_gridspec(2, 2, width_ratios=[5, 5], height_ratios=[3, 7],
left=0.1, right=0.9, bottom=0.1, top=0.9,
wspace=0.3, hspace=0.3)
mpl.rc("axes.formatter", limits=(-5, 3))
num_of_bins = 20
cmap = 'jet'
cell_bursting = cell_behavior["Burstiness"]
# baseline freq plot:
i = 0
cell = cell_behavior["f_inf_slope"]
@ -607,7 +740,7 @@ def plot_cell_model_comp_adaption(cell_behavior, model_behaviour):
ax = fig.add_subplot(gs[1, i])
ax_histx = fig.add_subplot(gs[0, i], sharex=ax)
scatter_hist(cell, model, ax, ax_histx, behaviour_titles["f_inf_slope"], bins) # , cmap, cell_bursting)
scatter_hist(cell, model, ax, ax_histx, behaviour_titles["f_inf_slope"], bins)
ax.set_xlabel(r"Cell [Hz]")
ax.set_ylabel(r"Model [Hz]")
ax_histx.set_ylabel("Count")
@ -619,12 +752,11 @@ def plot_cell_model_comp_adaption(cell_behavior, model_behaviour):
idx = np.array(cell) < 25000
cell = np.array(cell)[idx]
model = np.array(model)[idx]
cell_bursting = np.array(cell_bursting)[idx]
idx = np.array(model) < 25000
cell = np.array(cell)[idx]
model = np.array(model)[idx]
cell_bursting = np.array(cell_bursting)[idx]
print("removed {} values from f_zero_slope plot.".format(length_before - len(cell)))
minimum = min(min(cell), min(model))
@ -634,21 +766,52 @@ def plot_cell_model_comp_adaption(cell_behavior, model_behaviour):
ax = fig.add_subplot(gs[1, i])
ax_histx = fig.add_subplot(gs[0, i], sharex=ax)
scatter_hist(cell, model, ax, ax_histx, behaviour_titles["f_zero_slope"], bins) # , cmap, cell_bursting)
scatter_hist(cell, model, ax, ax_histx, behaviour_titles["f_zero_slope"], bins)
ax.set_xlabel("Cell [Hz]")
ax.set_ylabel("Model [Hz]")
ax_histx.set_ylabel("Count")
i += 1
# ratio:
cell_inf = cell_behavior["f_inf_slope"]
model_inf = model_behaviour["f_inf_slope"]
cell_zero = cell_behavior["f_zero_slope"]
model_zero = model_behaviour["f_zero_slope"]
cell_ratio = [cell_zero[i]/cell_inf[i] for i in range(len(cell_inf))]
model_ratio = [model_zero[i]/model_inf[i] for i in range(len(model_inf))]
idx = np.array(cell_ratio) < 60
cell_ratio = np.array(cell_ratio)[idx]
model_ratio = np.array(model_ratio)[idx]
idx = np.array(model_ratio) < 60
cell_ratio = np.array(cell_ratio)[idx]
model_ratio = np.array(model_ratio)[idx]
both_ratios = list(cell_ratio.copy())
both_ratios.extend(model_ratio)
bins = calculate_bins(both_ratios, num_of_bins)
ax = fig.add_subplot(gs[1, i])
ax_histx = fig.add_subplot(gs[0, i], sharex=ax)
scatter_hist(cell_ratio, model_ratio, ax, ax_histx, r"$f_0$ / $f_{\infty}$ slope ratio", bins)
ax.set_xlabel("Cell")
ax.set_ylabel("Model")
ax_histx.set_ylabel("Count")
plt.tight_layout()
fig.text(0.085, 0.925, 'A', ha='center', va='center', rotation='horizontal', size=16, family='serif')
fig.text(0.54, 0.925, 'B', ha='center', va='center', rotation='horizontal', size=16, family='serif')
# fig.text(0.085, 0.925, 'A', ha='center', va='center', rotation='horizontal', size=16, family='serif')
# fig.text(0.54, 0.925, 'B', ha='center', va='center', rotation='horizontal', size=16, family='serif')
plt.savefig(consts.SAVE_FOLDER + "fit_adaption_comparison.pdf", transparent=True)
plt.savefig(consts.SAVE_FOLDER + "fit_adaption_comparison_with_ratio.pdf", transparent=True)
plt.close()
mpl.rc("axes.formatter", limits=(-5, 6))
def scatter_hist(cell_values, model_values, ax, ax_histx, behaviour, bins, cmap=None, color_values=None):
# copied from matplotlib
@ -665,5 +828,15 @@ def scatter_hist(cell_values, model_values, ax, ax_histx, behaviour, bins, cmap=
ax_histx.set_title(behaviour)
def calculate_bins(values, num_of_bins):
minimum = np.min(values)
maximum = np.max(values)
step = (maximum - minimum) / (num_of_bins-1)
bins = np.arange(minimum-0.5*step, maximum + step, step)
return bins
if __name__ == '__main__':
main()

9
Sam.py
View File

@ -8,15 +8,22 @@ class SamAnalysis:
class SamAnalysisData(SamAnalysis):
pass
def __init__(self, cell_data):
self.cell_data = cell_data
self.mean_mod_freq_responses = []
class SamAnalysisModel(SamAnalysis):
def __init__(self, model):
pass
def get_sam_class(data) -> SamAnalysis:
if isinstance(data, CellData):
return SamAnalysisData(data)

View File

@ -12,9 +12,67 @@ import os
def main():
sam_analysis("results/invivo_results/2013-01-08-ad-invivo-1/")
sam_analysis("results/final_2/2011-10-25-ad-invivo-1/")
# plot_traces_with_spiketimes()
# plot_mean_of_cuts()
quit()
modelfit = get_best_fit("results/invivo_results/2013-01-08-ad-invivo-1/", use_comparable_error=False)
modelfit = get_best_fit("results/final_2/2011-10-25-ad-invivo-1/")
cell_data = CellData(modelfit.get_cell_path())
eod_freq = cell_data.get_eod_frequency()
model = modelfit.get_model()
test_model_response(model, eod_freq, 0.1, np.arange(5, 2500, 5))
def test_model_response(model: LifacNoiseModel, eod_freq, contrast, modulation_frequencies):
stds = []
for m_freq in modulation_frequencies:
if (1/m_freq) / 10 <= model.parameters["step_size"]:
model.parameters["step_size"] = (1/m_freq) / 10
step_size = model.parameters["step_size"]
print("mode_freq:", m_freq, "- step size:", step_size)
stimulus = SAM(eod_freq, contrast / 100, m_freq)
duration = 30
v1, spikes_model = model.simulate(stimulus, duration)
prob_density_function_model = spiketimes_calculate_pdf(spikes_model, step_size, kernel_width=0.005)
fig, ax = plt.subplots(1, 1)
ax.plot(prob_density_function_model)
ax.set_title("pdf with m_freq: {}".format(int(m_freq)))
plt.savefig("figures/sam/pdf_mfreq_{}.png".format(m_freq))
plt.close()
stds.append(np.std(prob_density_function_model))
plt.plot((np.array(modulation_frequencies)) / eod_freq, stds)
plt.show()
plt.close()
def plot_traces_with_spiketimes():
modelfit = get_best_fit("results/final_2/2011-10-25-ad-invivo-1/")
cell_data = modelfit.get_cell_data()
traces = cell_data.parser.__get_traces__("SAM")
# [time_traces, v1_traces, eod_traces, local_eod_traces, stimulus_traces]
sam_spiketimes = cell_data.get_sam_spiketimes()
for i in range(len(traces[0])):
fig, axes = plt.subplots(2, 1, sharex=True)
axes[0].plot(traces[0][i], traces[1][i])
axes[0].plot(list(sam_spiketimes[i]), list([max(traces[1][i])] * len(sam_spiketimes[i])), 'o')
axes[1].plot(traces[0][i], traces[3][i])
plt.show()
plt.close()
def plot_mean_of_cuts():
modelfit = get_best_fit("results/final_2/2018-05-08-ac-invivo-1/")
if not os.path.exists(os.path.join(modelfit.get_cell_path(), "samallspikes1.dat")):
print("Cell: {} \n Has no measured sam stimuli.")
@ -24,20 +82,6 @@ def main():
eod_freq = cell_data.get_eod_frequency()
model = modelfit.get_model()
# base_cell = get_baseline_class(cell_data)
# base_model = get_baseline_class(model, cell_data.get_eod_frequency())
# isis_cell = np.array(base_cell.get_interspike_intervals()) * 1000
# isi_model = np.array(base_model.get_interspike_intervals()) * 1000
# bins = np.arange(0, 20, 0.1)
# plt.hist(isi_model, bins=bins, alpha=0.5)
# plt.hist(isis_cell, bins=bins, alpha=0.5)
# plt.show()
# plt.close()
# ficurve = FICurveModel(model, np.arange(-1, 1.1, 0.1), eod_freq)
#
# ficurve.plot_fi_curve()
durations = cell_data.get_sam_durations()
u_durations = np.unique(durations)
mean_duration = np.mean(durations)
@ -56,17 +100,16 @@ def main():
spikes_dictionary[m_freq] = [spiketimes[i]]
for m_freq in sorted(spikes_dictionary.keys()):
if mean_duration < 2*1/float(m_freq):
if mean_duration < 2 * (1 / float(m_freq)):
print("meep")
continue
stimulus = SAM(eod_freq, contrast / 100, m_freq)
v1, spikes_model = model.simulate(stimulus, mean_duration * 4)
v1, spikes_model = model.simulate(stimulus, 4)
prob_density_function_model = spiketimes_calculate_pdf(spikes_model, step_size)
# plt.plot(prob_density_function_model)
# plt.show()
# plt.close()
fig, axes = plt.subplots(1, 4)
cuts = cut_pdf_into_periods(prob_density_function_model, 1/float(m_freq), step_size)
start_idx = int(2 / step_size)
cuts = cut_pdf_into_periods(prob_density_function_model[start_idx:], 1 / float(m_freq), step_size)
for c in cuts:
axes[0].plot(c, color="gray", alpha=0.2)
axes[0].set_title("model")
@ -77,14 +120,13 @@ def main():
for spikes_cell in spikes_dictionary[m_freq]:
prob_density_cell = spiketimes_calculate_pdf(spikes_cell[0], step_size)
if len(prob_density_cell) < 3 * (eod_freq / step_size):
continue
cuts_cell = cut_pdf_into_periods(prob_density_cell, 1 / float(m_freq), step_size)
for c in cuts_cell:
axes[1].plot(c, color="gray", alpha=0.15)
print(cuts_cell.shape)
means_cell.append(np.mean(cuts_cell, axis=0))
if len(means_cell) == 0:
print("means cell length zero")
continue
means_cell = np.array(means_cell)
total_mean_cell = np.mean(means_cell, axis=0)
@ -129,9 +171,11 @@ def sam_analysis(fit_path):
delta_freqs = cell_data.get_sam_delta_frequencies()
u_delta_freqs = np.unique(delta_freqs)
all_data = []
cell_stds = []
model_stds = []
for mod_freq in sorted(u_delta_freqs):
# TODO problem of cutting the pdf as in some cases the pdf is shorter than 1 modulation frequency period!
# length info wrong ? always at least one period?
if 1/mod_freq > durations[0] / 4:
print("skipped mod_freq: {}".format(mod_freq))
@ -152,53 +196,93 @@ def sam_analysis(fit_path):
print("There are more spiketimes in one 'point'! Only the first was used! ")
spikes = spiketimes[i][0]
cell_pdf = spiketimes_calculate_pdf(spikes, step_size)
cell_cuts = cut_pdf_into_periods(cell_pdf, 1/mod_freq, step_size, factor=1.1, use_all=True)
cell_cuts = cut_pdf_into_periods(cell_pdf, 1/mod_freq, step_size, factor=1.0)
cell_mean = np.mean(cell_cuts, axis=0)
cell_means.append(cell_mean)
# fig, axes = plt.subplots(1, 2)
# for c in cell_cuts:
# axes[0].plot(c, color="grey", alpha=0.2)
# axes[0].plot(np.mean(cell_means, axis=0), color="black")
stimulus = SAM(eod_freq, contrasts[i] / 100, mod_freq)
v1, spikes_model = model.simulate(stimulus, durations[i] * 4)
model_pdf = spiketimes_calculate_pdf(spikes_model, step_size)
model_cuts = cut_pdf_into_periods(model_pdf, 1/mod_freq, step_size, factor=1.1)
model_cuts = cut_pdf_into_periods(model_pdf, 1/mod_freq, step_size, factor=1.0)
model_mean = np.mean(model_cuts, axis=0)
model_means.append(model_mean)
# for c in model_cuts:
# axes[1].plot(c, color="grey", alpha=0.2)
# axes[1].plot(np.mean(model_cuts, axis=0), color="black")
# plt.title("mod_freq: {}".format(mod_freq))
# plt.show()
# plt.close()
final_cell_mean = np.mean(cell_means, axis=0)
final_model_mean = np.mean(model_means, axis=0)
cell_stds.append(np.std(final_cell_mean))
model_stds.append(np.std(final_model_mean))
final_model_mean_phase_corrected = correct_phase(final_cell_mean, final_model_mean, step_size)
fig, axes = plt.subplots(1, 4)
# PLOT EVERY MOD FREQ
fig, axes = plt.subplots(1, 5, figsize=(15, 5), sharex=True)
for c in cell_means:
axes[0].plot(c, color="grey", alpha=0.2)
axes[0].plot(np.mean(cell_means, axis=0), color="black")
axes[0].set_title("Cell response")
axis_cell = axes[0].axis()
for m in model_means:
axes[1].plot(m, color="grey", alpha=0.2)
axes[1].plot(np.mean(model_means, axis=0), color="black")
axes[1].set_title("Model response")
axis_model = axes[1].axis()
ylim_top = max(axis_cell[3], axis_model[3])
axes[1].set_ylim(0, ylim_top)
axes[0].set_ylim(0, ylim_top)
axes[2].set_ylim(0, ylim_top)
axes[2].plot(final_cell_mean, label="cell")
axes[2].plot(final_model_mean, label="model")
axes[2].plot(final_model_mean_phase_corrected, label="model p-cor")
axes[2].legend()
axes[2].set_title("cell-model overlapped")
axes[3].plot((final_model_mean - final_cell_mean) / final_cell_mean, label="normal")
axes[3].plot((final_model_mean_phase_corrected- final_cell_mean) / final_cell_mean, label="phase cor")
axes[3].set_title("rel. error")
axes[3].legend()
axes[4].plot(final_model_mean - final_cell_mean, label="normal")
axes[4].plot(final_model_mean_phase_corrected - final_cell_mean, label="phase cor")
axes[4].set_title("abs. error (Hz)")
axes[4].legend()
fig.suptitle("modulation frequency: {}".format(mod_freq))
# plt.tight_layout()
plt.show()
plt.close()
axes[2].plot((np.mean(model_means, axis=0) - np.mean(cell_means, axis=0)) / np.mean(model_means, axis=0))
fig, ax = plt.subplots(1, 1)
plt.title("modulation frequency: {}".format(mod_freq))
ax.plot(u_delta_freqs, cell_stds, label="cell stds")
ax.plot(u_delta_freqs, model_stds, label="model stds")
ax.set_title("response modulation depth")
ax.set_xlabel("Modulation frequency")
ax.set_ylabel("STD")
ax.legend()
plt.show()
plt.close()
def correct_phase(cell_mean, model_mean, step_size):
# test for every 0.2 ms roll in the total time:
lowest_err = np.inf
roll_idx = 0
for i in range(int(len(cell_mean) * step_size * 1000) * 5):
roll_by = int((i / 5 / 1000) / step_size)
rolled = np.roll(model_mean, roll_by)
# rms = np.sqrt(np.mean(np.power((cell_mean - rolled), 2)))
abs = np.sum(np.abs(cell_mean-rolled))
if abs < lowest_err:
lowest_err = abs
roll_idx = roll_by
return np.roll(model_mean, roll_idx)
def generate_pdf(model, stimulus, trials=4, sim_length=3, kernel_width=0.005):
trials_rate_list = []
@ -221,7 +305,7 @@ def generate_pdf(model, stimulus, trials=4, sim_length=3, kernel_width=0.005):
return mean_rate
def spiketimes_calculate_pdf(spikes, step_size, kernel_width=0.005):
def spiketimes_calculate_pdf(spikes, step_size, kernel_width=0.001):
length = int(spikes[len(spikes)-1] / step_size)+1
binary = np.zeros(length)
spikes = [int(s / step_size) for s in spikes]
@ -234,7 +318,11 @@ def spiketimes_calculate_pdf(spikes, step_size, kernel_width=0.005):
return rate
def cut_pdf_into_periods(pdf, period, step_size, factor=1.5, use_all=False):
def cut_pdf_into_periods(pdf, period, step_size, factor=1.5):
if period < 0:
print("cut_pdf_into_periods(): Period was negative! Absolute value taken to continue")
period = abs(period)
if period / step_size > len(pdf):
return [pdf]

View File

@ -1,6 +1,5 @@
from stimuli.AbstractStimulus import AbstractStimulus
import numpy as np
from numba import jit, njit
from warnings import warn
@ -63,7 +62,6 @@ def convert_to_array(carrier_freq, amplitude, modulation_freq, contrast, start_t
else:
am_end = time_start + total_time
idx_start = (am_start - time_start) / step_size_s
idx_end = (am_end - time_start) / step_size_s
@ -81,45 +79,3 @@ def convert_to_array(carrier_freq, amplitude, modulation_freq, contrast, start_t
values[idx_start:idx_end] = values[idx_start:idx_end]*am
return values
# # if the whole stimulus time has the amplitude modulation just built it at once;
# if time_start >= start_time and start_time+duration < time_start+total_time:
# carrier = np.sin(2 * np.pi * carrier_freq * np.arange(start_time, total_time - start_time, step_size_s))
# modulation = 1 + contrast * np.sin(2 * np.pi * modulation_freq * np.arange(start_time, total_time - start_time, step_size_s))
# values = amplitude * carrier * modulation
# return values
#
# # if it is split into parts with and without amplitude modulation built it in parts:
# values = np.array([])
#
# # there is some time before the modulation starts:
# if time_start < start_time:
# carrier_before_am = np.sin(2 * np.pi * carrier_freq * np.arange(time_start, start_time, step_size_s))
# values = np.concatenate((values, amplitude * carrier_before_am))
#
# # there is at least a second part of the stimulus that contains the amplitude:
# # time starts before the end of the am and ends after it was started
# if time_start < start_time+duration and time_start+total_time > start_time:
# if duration is np.inf:
#
# carrier_during_am = np.sin(
# 2 * np.pi * carrier_freq * np.arange(start_time, time_start + total_time, step_size_s))
# am = 1 + contrast * np.sin(
# 2 * np.pi * modulation_freq * np.arange(start_time, time_start + total_time, step_size_s))
# else:
# carrier_during_am = np.sin(
# 2 * np.pi * carrier_freq * np.arange(start_time, start_time + duration, step_size_s))
# am = 1 + contrast * np.sin(
# 2 * np.pi * modulation_freq * np.arange(start_time, start_time + duration, step_size_s))
# values = np.concatenate((values, amplitude * am * carrier_during_am))
#
# else:
# if contrast != 0:
# print("Given stimulus time parameters (start, total) result in no part of it containing the amplitude modulation!")
#
# if time_start+total_time > start_time+duration:
# carrier_after_am = np.sin(2 * np.pi * carrier_freq * np.arange(start_time + duration, time_start + total_time, step_size_s))
# values = np.concatenate((values, amplitude*carrier_after_am))
#
# return values

70
test.py
View File

@ -22,67 +22,15 @@ from matplotlib import gridspec
# from plottools.axes import labelaxes_params
cell = "data/final/2018-05-08-ab-invivo-1/"
cell_data = CellData(cell)
step = cell_data.get_sampling_interval()
v1 = cell_data.get_base_traces(cell_data.V1)[0]
time = cell_data.get_base_traces(cell_data.TIME)[0]
spiketimes = cell_data.get_base_spikes()[0]
start = 0
duration = 25
fig, ax = plt.subplots(1, 1)
ax.plot((np.array(time[:int(duration/step)]) - start) * 1000, v1[:int(duration/step)])
ax.eventplot([s * 1000 for s in spiketimes if start < s < start + duration],
lineoffsets=max(v1[:int(duration/step)])+1.25, color="black", linelengths=2)
plt.show()
plt.close()
quit()
# sp = self.spikes(index)
# binary = np.zeros(t.shape)
# spike_indices = ((sp - t[0]) / dt).astype(int)
# binary[spike_indices[(spike_indices >= 0) & (spike_indices < len(binary))]] = 1
# g = gaussian_kernel(kernel_width, dt)
# rate = np.convolve(binary, g, mode='same')
fit = get_best_fit("results/final_2/2012-12-21-am-invivo-1/")
model = fit.get_model()
cell_data = fit.get_cell_data()
eodf = cell_data.get_eod_frequency()
parameters = model.parameters
time_param_keys = ["refractory_period", "tau_a", "mem_tau", "dend_tau"]
contrasts = np.arange(-0.3, 0.3, 0.05)
baseline_normal = BaselineModel(model, eodf)
fi_curve_normal = FICurveModel(model, contrasts, eodf)
fi_curve_normal.plot_fi_curve()
normal_isis = baseline_normal.get_interspike_intervals() * eodf
normal_bins = np.arange(0, 0.05, 0.0001) * eodf
factor = 1.1
scaled_eodf = eodf * factor
scaled_model = model.get_model_copy()
for key in time_param_keys:
scaled_model.parameters[key] = parameters[key] / factor
baseline_scaled = BaselineModel(scaled_model, scaled_eodf)
fi_curve_scaled = FICurveModel(scaled_model, contrasts, scaled_eodf)
fi_curve_scaled.plot_fi_curve()
scaled_isis = np.array(baseline_scaled.get_interspike_intervals()) * scaled_eodf
scaled_bins = np.arange(0, 0.05, 0.0001) * scaled_eodf
# plt.hist(normal_isis, bins=normal_bins, alpha=0.5, label="normal")
# plt.hist(scaled_isis, bins=scaled_bins, alpha=0.5, label="scaled")
# plt.legend()
# plt.show()
directory = "data/final"
count = 0
for cell in sorted(os.listdir(directory)):
cell_dir = os.path.join(directory, cell)
if os.path.exists(cell_dir + "/samallspikes1.dat"):
print(cell)
count += 1
print(count)

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -511,7 +511,7 @@ Before the parameter distributions (fig. \ref{fig:parameter_distributions}) and
\begin{figure}[H]
\includegraphics{figures/parameter_distributions.pdf}
\includegraphics{figures/scaled_to_800_parameter_distributions.pdf}
\caption{\label{fig:parameter_distributions} Distributions of all eight model parameters with the time scaled for all models so their driving EOD frequency has 800\,Hz. \textbf{A}: input scaling $\alpha$, \textbf{B}: Bias current $I_{Bias}$, \textbf{C}: membrane time constant $\tau_m$, \textbf{D}: noise strength $\sqrt{2D}$, \textbf{E}: adaption time constant $\tau_A$, \textbf{F}: adaption strength $\Delta_A$, \textbf{G}: time constant of the dendritic low pass filter $\tau_{dend}$, \textbf{H}: refractory period $t_{ref}$}
\end{figure}

Binary file not shown.