plot cell reaction to SAM stimulus
This commit is contained in:
parent
4b4e5c6d14
commit
db27e7c980
68
sam_experiments.py
Normal file
68
sam_experiments.py
Normal file
@ -0,0 +1,68 @@
|
||||
|
||||
from stimuli.SinusAmplitudeModulation import SinusAmplitudeModulationStimulus as SAM
|
||||
from models.LIFACnoise import LifacNoiseModel
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import helperFunctions as hF
|
||||
|
||||
|
||||
def main():
|
||||
# 2012-12-13_ao fit and eod frequency:
|
||||
parameters = {'mem_tau': 0.0133705462739553, 'tau_a': 0.06682759542588587, 'input_scaling': 60.766243690761144,
|
||||
'v_base': 0, 'step_size': 5e-05, 'dend_tau': 0.0008667253013050408, 'v_zero': 0, 'v_offset': -6.25,
|
||||
'noise_strength': 0.03337309379328535, 'a_zero': 2, 'threshold': 1, 'delta_a': 0.0726267312975076}
|
||||
eod_freq = 658
|
||||
|
||||
model = LifacNoiseModel(parameters)
|
||||
|
||||
# __init__(carrier_frequency, contrast, modulation_frequency, start_time=0, duration=np.inf, amplitude=1)
|
||||
mod_freqs = np.arange(-60, eod_freq*4 + 61, 10)
|
||||
sigma_of_pdfs = []
|
||||
for m_freq in mod_freqs:
|
||||
print(m_freq, "max: {:.2f}".format(mod_freqs[-1]))
|
||||
stimulus = SAM(eod_freq, 0.2, m_freq)
|
||||
|
||||
prob_density_function = generate_pdf(model, stimulus)
|
||||
buffer = 0.25
|
||||
buffer_idx = int(buffer / model.get_parameters()["step_size"])
|
||||
|
||||
sigma_of_pdfs.append(np.std(prob_density_function[buffer_idx:-buffer_idx]))
|
||||
|
||||
normed_mod_freqs = (mod_freqs + eod_freq) / eod_freq
|
||||
plt.plot(normed_mod_freqs, sigma_of_pdfs)
|
||||
plt.savefig("./figures/sam/test.png")
|
||||
plt.close()
|
||||
|
||||
pass
|
||||
|
||||
|
||||
def generate_pdf(model, stimulus, trials=4, sim_length=3, kernel_width=0.005):
|
||||
|
||||
trials_rate_list = []
|
||||
step_size = model.get_parameters()["step_size"]
|
||||
for _ in range(trials):
|
||||
v1, spikes = model.simulate(stimulus, total_time_s=sim_length)
|
||||
|
||||
binary = np.zeros(int(sim_length/step_size))
|
||||
spikes = [int(s / step_size) for s in spikes]
|
||||
for s_idx in spikes:
|
||||
binary[s_idx] = 1
|
||||
|
||||
kernel = gaussian_kernel(kernel_width, step_size)
|
||||
rate = np.convolve(binary, kernel, mode='same')
|
||||
trials_rate_list.append(rate)
|
||||
|
||||
times = [np.arange(0, sim_length, step_size) for _ in range(trials)]
|
||||
t, mean_rate = hF.calculate_mean_of_frequency_traces(times, trials_rate_list, step_size)
|
||||
|
||||
return mean_rate
|
||||
|
||||
|
||||
def gaussian_kernel(sigma, dt):
|
||||
x = np.arange(-4. * sigma, 4. * sigma, dt)
|
||||
y = np.exp(-0.5 * (x / sigma) ** 2) / np.sqrt(2. * np.pi) / sigma
|
||||
return y
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in New Issue
Block a user