P-unit_model/sam_experiments.py
2020-05-27 09:13:39 +02:00

69 lines
2.3 KiB
Python

from stimuli.SinusAmplitudeModulation import SinusAmplitudeModulationStimulus as SAM
from models.LIFACnoise import LifacNoiseModel
import numpy as np
import matplotlib.pyplot as plt
import helperFunctions as hF
def main():
# 2012-12-13_ao fit and eod frequency:
parameters = {'mem_tau': 0.0133705462739553, 'tau_a': 0.06682759542588587, 'input_scaling': 60.766243690761144,
'v_base': 0, 'step_size': 5e-05, 'dend_tau': 0.0008667253013050408, 'v_zero': 0, 'v_offset': -6.25,
'noise_strength': 0.03337309379328535, 'a_zero': 2, 'threshold': 1, 'delta_a': 0.0726267312975076}
eod_freq = 658
model = LifacNoiseModel(parameters)
# __init__(carrier_frequency, contrast, modulation_frequency, start_time=0, duration=np.inf, amplitude=1)
mod_freqs = np.arange(-60, eod_freq*4 + 61, 10)
sigma_of_pdfs = []
for m_freq in mod_freqs:
print(m_freq, "max: {:.2f}".format(mod_freqs[-1]))
stimulus = SAM(eod_freq, 0.2, m_freq)
prob_density_function = generate_pdf(model, stimulus)
buffer = 0.25
buffer_idx = int(buffer / model.get_parameters()["step_size"])
sigma_of_pdfs.append(np.std(prob_density_function[buffer_idx:-buffer_idx]))
normed_mod_freqs = (mod_freqs + eod_freq) / eod_freq
plt.plot(normed_mod_freqs, sigma_of_pdfs)
plt.savefig("./figures/sam/test.png")
plt.close()
pass
def generate_pdf(model, stimulus, trials=4, sim_length=3, kernel_width=0.005):
trials_rate_list = []
step_size = model.get_parameters()["step_size"]
for _ in range(trials):
v1, spikes = model.simulate(stimulus, total_time_s=sim_length)
binary = np.zeros(int(sim_length/step_size))
spikes = [int(s / step_size) for s in spikes]
for s_idx in spikes:
binary[s_idx] = 1
kernel = gaussian_kernel(kernel_width, step_size)
rate = np.convolve(binary, kernel, mode='same')
trials_rate_list.append(rate)
times = [np.arange(0, sim_length, step_size) for _ in range(trials)]
t, mean_rate = hF.calculate_mean_of_frequency_traces(times, trials_rate_list, step_size)
return mean_rate
def gaussian_kernel(sigma, dt):
x = np.arange(-4. * sigma, 4. * sigma, dt)
y = np.exp(-0.5 * (x / sigma) ** 2) / np.sqrt(2. * np.pi) / sigma
return y
if __name__ == '__main__':
main()