plot burstiness

This commit is contained in:
a.ott 2020-07-09 14:00:23 +02:00
parent bf8634a247
commit 7f8391ba4f

71
test.py
View File

@ -1,68 +1,25 @@
from Baseline import get_baseline_class from Baseline import get_baseline_class
from CellData import CellData from CellData import CellData, icelldata_of_dir
from models.LIFACnoise import LifacNoiseModel from models.LIFACnoise import LifacNoiseModel
from Baseline import BaselineCellData, BaselineModel from Baseline import BaselineCellData, BaselineModel
from os import listdir from os import listdir
import numpy as np
from IPython import embed from IPython import embed
import pyrelacs.DataLoader as Dl import pyrelacs.DataLoader as Dl
from ModelFit import ModelFit from ModelFit import ModelFit
from FiCurve import FICurveModel
import os
import matplotlib.pyplot as plt
fit = ModelFit("results/invivo_results/start_parameter_7_err_6.87/") vs = []
for cell in icelldata_of_dir("invivo_data/"):
print(fit.comparable_error()) base = BaselineCellData(cell)
fit.generate_master_plot()
vs.append(base.get_burstiness())
bins = np.arange(0, 1.05, 0.05)
quit() plt.hist(vs, bins=bins)
plt.show()
def icelldata_of_dir(base_path):
global COUNT
for item in sorted(listdir(base_path)):
item_path = base_path + item
try:
data = CellData(item_path)
yield data
except TypeError as e:
print(str(e))
except IndexError as e:
print(str(e), "\n")
except ValueError as e:
print(str(e), "\n")
print("Currently throw errors: {}".format(COUNT))
for data in icelldata_of_dir("invivo_data/"):
v1 = data.get_base_traces(data.V1)
if len(v1) == 0:
embed()
quit()
quit()
parameter_bursty_model = {'step_size': 5e-05, 'mem_tau': 0.0066693150193490695, 'v_base': 0, 'v_zero': 0,
'threshold': 1, 'v_offset': -45.703125, 'input_scaling': 172.13861987237314,
'delta_a': 0.06148215166012024, 'tau_a': 0.03391674075000068, 'a_zero': 2,
'noise_strength': 0.0684136549210377, 'dend_tau': 0.0013694103932013805,
'refractory_period': 0.001}
eod = 752
model = LifacNoiseModel(parameter_bursty_model)
baseline_model = get_baseline_class(model, 752, trials=2)
baseline_model.get_burstiness()
quit() quit()