jar_project/eigenmannia_jar.py
2020-09-10 17:38:04 +02:00

127 lines
4.7 KiB
Python

import matplotlib.pyplot as plt
import numpy as np
import os
import nix_helpers as nh
from IPython import embed
from matplotlib.mlab import specgram
#from tqdm import tqdm
from jar_functions import parse_stimuli_dat
from jar_functions import norm_function_eigen
from jar_functions import mean_noise_cut_eigen
from jar_functions import get_time_zeros
from jar_functions import import_data_eigen
from scipy.signal import savgol_filter
base_path = 'D:\\jar_project\\JAR\\eigenmannia\\deltaf'
identifier = ['2013eigen13', '2015eigen16', '2015eigen17', '2015eigen19', '2020eigen22', '2020eigen32']
response = []
deltaf = []
for ID in identifier:
for dataset in os.listdir(os.path.join(base_path, ID)):
datapath = os.path.join(base_path, ID, dataset, '%s.nix' % dataset)
print(datapath)
stimuli_dat = os.path.join(base_path, ID, dataset, 'manualjar-eod.dat')
df, duration = parse_stimuli_dat(stimuli_dat)
dur = int(duration[0][0:2])
print(df)
# base with nh.read_eod
time, eod = nh.read_eod(datapath, duration = 2000) # anstatt dem import data mit tag manual jar - dann sollte onset wirklich bei 10 sec sein
dt = time[1] - time[0]
nfft = 2 **17
spec_0, freqs_0, times_0 = specgram(eod, Fs=1 / dt, detrend='mean', NFFT=nfft, noverlap=nfft * 0.95)
dbspec_0 = 10.0 * np.log10(spec_0) # in dB
plt.imshow(dbspec_0, cmap='jet', origin='lower', extent=(times_0[0], times_0[-1], 0, 1500), aspect='auto',
vmin=-80, vmax=-10)
plt.show()
zeropoints = get_time_zeros(time, eod, threshold=np.max(eod) * 0.1)
frequencies = 1 / np.diff(zeropoints)
window = np.ones(101) / 101
freq = np.convolve(frequencies, window, mode='same')
data, pre_data, dt = import_data_eigen(datapath)
# data
nfft = 2**17
spec_0, freqs_0, times_0 = specgram(data[0], Fs=1 / dt, detrend='mean', NFFT=nfft, noverlap=nfft * 0.95)
dbspec_0 = 10.0 * np.log10(spec_0) # in dB
power_0 = dbspec_0[:, 25]
fish_p_0 = power_0[(freqs_0 > 200) & (freqs_0 < 1000)]
fish_f_0 = freqs_0[(freqs_0 > 200) & (freqs_0 < 1000)]
index_0 = np.argmax(fish_p_0)
eodf_0 = fish_f_0[index_0]
eodf4_0 = eodf_0 * 4
lim0_0 = eodf4_0-20
lim1_0 = eodf4_0+20
df_0= freqs_0[1] - freqs_0[0]
ix0_0 = int(np.floor(lim0_0/df_0)) # back to index
ix1_0 = int(np.ceil(lim1_0/df_0)) # back to index
spec4_0= dbspec_0[ix0_0:ix1_0, :]
freq4_0 = freqs_0[ix0_0:ix1_0]
jar4 = freq4_0[np.argmax(spec4_0, axis=0)] # all freqs at max specs over axis 0
jm = jar4 - np.mean(jar4) # data we take
cut_time_jar = times_0[:len(jar4)]
#plt.imshow(spec4, cmap='jet', origin='lower', extent=(times[0], times[-1], lim0, lim1), aspect='auto', vmin=-80,
#vmax=-10)
#plt.imshow(spec4_0, cmap='jet', origin='lower', extent=(times_0[0], times_0[-1], lim0_0, lim1_0), aspect='auto', vmin=-80, vmax=-10)
plt.plot(cut_time_jar, jm)
#plt.ylim(lim0_0, lim1_0)
# pre_data
nfft = 2 ** 17
spec_1, freqs_1, times_1 = specgram(pre_data[0], Fs=1 / dt, detrend='mean', NFFT=nfft, noverlap=nfft * 0.95)
dbspec_1 = 10.0 * np.log10(spec_1) # in dB
power_1 = dbspec_1[:, 25]
fish_p_1 = power_1[(freqs_1 > 200) & (freqs_1 < 500)]
fish_f_1 = freqs_1[(freqs_1 > 200) & (freqs_1 < 500)]
index1 = np.argmax(fish_p_1)
eodf_1 = fish_f_1[index1]
eodf4_1 = eodf_1 * 4
lim0_1 = eodf4_1 - 20
lim1_1 = eodf4_1 + 20
df_1 = freqs_1[1] - freqs_1[0]
ix0_1 = int(np.floor(lim0_1 / df_1)) # back to index
ix1_1 = int(np.ceil(lim1_1 / df_1)) # back to index
spec4_1 = dbspec_1[ix0_1:ix1_1, :]
freq4_1 = freqs_1[ix0_1:ix1_1]
base4 = freq4_1[np.argmax(spec4_1, axis=0)] # all freqs at max specs over axis 0
bm = base4 - np.mean(base4) # data we take
cut_time_base = times_1[:len(base4)] - times_1[-1]
plt.plot(cut_time_base, bm)
j = []
for idx, i in enumerate(times_0):
if i > 45 and i < 55:
j.append(jm[idx])
plt.plot(j)
plt.show()
r = np.median(j) - np.median(bm)
deltaf.append(df[0])
response.append(r)
embed()
res_df = sorted(zip(deltaf,response))#
np.save('res_df_%s_new' %ID, res_df)
# problem: rohdaten(data, pre_data) lassen sich auf grund ihrer 1D-array struktur nicht savgol filtern
# diese bekomm ich nur über specgram in form von freq / time auftragen, was nicht mehr savgol gefiltert werden kann
# jedoch könnte ich trotzdem einfach aus jar4 response herauslesen wobei dies dann weniger gefiltert wäre