103 lines
3.4 KiB
Python
103 lines
3.4 KiB
Python
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import os
|
|
import nix_helpers as nh
|
|
from IPython import embed
|
|
from matplotlib.mlab import specgram
|
|
#from tqdm import tqdm
|
|
from jar_functions import parse_stimuli_dat
|
|
from jar_functions import norm_function_eigen
|
|
from jar_functions import mean_noise_cut_eigen
|
|
from jar_functions import get_time_zeros
|
|
from jar_functions import import_data_eigen
|
|
from scipy.signal import savgol_filter
|
|
|
|
plt.rcParams.update({'font.size': 18})
|
|
|
|
base_path = 'D:\\jar_project\\JAR\\eigenmannia\\deltaf'
|
|
|
|
#2015eigen8 no nix files
|
|
identifier = [#'2013eigen13',
|
|
'2015eigen16','2015eigen17', '2015eigen19', '2020eigen22','2020eigen32']
|
|
|
|
|
|
response = []
|
|
deltaf = []
|
|
for ID in identifier:
|
|
for dataset in os.listdir(os.path.join(base_path, ID)):
|
|
datapath = os.path.join(base_path, ID, dataset, '%s.nix' % dataset)
|
|
print(datapath)
|
|
stimuli_dat = os.path.join(base_path, ID, dataset, 'manualjar-eod.dat')
|
|
#print(stimuli_dat)
|
|
delta_f, duration = parse_stimuli_dat(stimuli_dat)
|
|
dur = int(duration[0][0:2])
|
|
print(delta_f)
|
|
if delta_f != [4.0]:
|
|
continue
|
|
data, pre_data, dt = import_data_eigen(datapath)
|
|
|
|
#hstack concatenate: 'glue' pre_data and data
|
|
dat = np.hstack((pre_data, data))
|
|
|
|
# data
|
|
nfft = 2**17
|
|
spec, freqs, times = specgram(dat[0], Fs=1 / dt, detrend='mean', NFFT=nfft, noverlap=nfft * 0.95)
|
|
dbspec = 10.0 * np.log10(spec) # in dB
|
|
power = dbspec[:, 25]
|
|
|
|
fish_p = power[(freqs > 200) & (freqs < 1000)]
|
|
fish_f = freqs[(freqs > 200) & (freqs < 1000)]
|
|
|
|
index = np.argmax(fish_p)
|
|
eodf = fish_f[index]
|
|
eodf4 = eodf * 4
|
|
|
|
lim0 = eodf4 - 40
|
|
lim1 = eodf4 + 60
|
|
|
|
df = freqs[1] - freqs[0]
|
|
ix0 = int(np.floor(lim0/df)) # back to index
|
|
ix1 = int(np.ceil(lim1/df)) # back to index
|
|
spec4= dbspec[ix0:ix1, :]
|
|
freq4 = freqs[ix0:ix1]
|
|
jar4 = freq4[np.argmax(spec4, axis=0)] # all freqs at max specs over axis 0
|
|
|
|
cut_time_jar = times[:len(jar4)]
|
|
ID_delta_f = [ID, str(delta_f[0]).split('.')[0]]
|
|
|
|
b = []
|
|
for idx, i in enumerate(times):
|
|
if i > 0 and i < 10:
|
|
b.append(jar4[idx])
|
|
j = []
|
|
for idx, i in enumerate(times):
|
|
if i > 15 and i < 55:
|
|
j.append(jar4[idx])
|
|
|
|
r = np.median(j) - np.median(b)
|
|
print('response:', r)
|
|
deltaf.append(delta_f[0])
|
|
response.append(r)
|
|
|
|
plt.figure(figsize = (14,8))
|
|
plt.imshow(spec4, cmap='jet', origin='lower', extent=(times[0], times[-1], lim0, lim1), aspect='auto', vmin=-80, vmax=-10)
|
|
plt.plot(cut_time_jar, jar4, 'k', label = 'peak detection trace', lw = 2)
|
|
plt.hlines(y=lim0 + 5, xmin=10, xmax=70, lw=4, color='yellow', label='stimulus duration')
|
|
plt.hlines(y=lim0 + 5, xmin=0, xmax=10, lw=4, color='red', label='pause')
|
|
plt.title('spectogram %s, deltaf: %sHz' %tuple(ID_delta_f))
|
|
plt.xlim(times[0],times[-1])
|
|
#embed()
|
|
#plt.xticks((times[0], 10, 20, 30, 40, 50, 60, times[-1]), [0, 10, 20, 30 ,40, 50, 60, 70])
|
|
plt.xlabel('time [s]')
|
|
plt.ylabel('frequency [Hz]')
|
|
plt.legend(loc = 'best')
|
|
plt.show()
|
|
delta_f_ID = [str(delta_f[0]).split('.')[0], ID]
|
|
|
|
plt.close()
|
|
|
|
|
|
res_df = sorted(zip(deltaf,response))
|
|
|
|
#np.save('res_df_%s_new' %ID, res_df)
|