119 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			119 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import matplotlib.pyplot as plt
 | 
						|
import numpy as np
 | 
						|
import pylab
 | 
						|
from IPython import embed
 | 
						|
from scipy.optimize import curve_fit
 | 
						|
from jar_functions import gain_curve_fit
 | 
						|
from jar_functions import avgNestedLists
 | 
						|
import matplotlib as mpl
 | 
						|
from matplotlib import cm
 | 
						|
 | 
						|
identifier_uniform = ['2018lepto1',
 | 
						|
              # '2018lepto4',
 | 
						|
              # '2018lepto5',
 | 
						|
              #'2018lepto76',
 | 
						|
              '2018lepto98',
 | 
						|
              # '2019lepto03',
 | 
						|
              '2019lepto24',
 | 
						|
              #'2019lepto27',
 | 
						|
              # '2019lepto30',
 | 
						|
              '2020lepto04',
 | 
						|
              # '2020lepto06',
 | 
						|
              # '2020lepto16',
 | 
						|
              '2020lepto19',
 | 
						|
              # '2020lepto20'
 | 
						|
              ]
 | 
						|
identifier = ['2018lepto1',
 | 
						|
              '2018lepto4',
 | 
						|
              '2018lepto5',
 | 
						|
              '2018lepto76',
 | 
						|
              '2018lepto98',
 | 
						|
              '2019lepto03',
 | 
						|
              '2019lepto24',
 | 
						|
              '2019lepto27',
 | 
						|
              '2019lepto30',
 | 
						|
              '2020lepto04',
 | 
						|
              '2020lepto06',
 | 
						|
              '2020lepto16',
 | 
						|
              '2020lepto19',
 | 
						|
              '2020lepto20'
 | 
						|
              ]
 | 
						|
 | 
						|
amf = [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1]
 | 
						|
#colors = ['dimgray', 'dimgrey', 'gray', 'grey', 'darkgray', 'darkgrey', 'silver', 'lightgray', 'lightgrey', 'gainsboro', 'whitesmoke']
 | 
						|
colorss = ['g', 'b', 'r', 'y', 'c', 'm', 'k']
 | 
						|
all = []
 | 
						|
new_all = []
 | 
						|
for ident in identifier:
 | 
						|
    data = np.load('gain_%s.npy' %ident)
 | 
						|
    all.append(data)
 | 
						|
for ident in identifier_uniform:
 | 
						|
    data = np.load('gain_%s.npy' % ident)
 | 
						|
    new_all.append(data)
 | 
						|
 | 
						|
av = avgNestedLists(all)
 | 
						|
new_av = avgNestedLists(new_all)
 | 
						|
 | 
						|
fig = plt.figure()
 | 
						|
ax = fig.add_subplot(111)
 | 
						|
#ax.plot(amf, av, 'o', color = 'orange', label = 'normal')
 | 
						|
ax.plot(amf, new_av, 'o', label = 'uniformed')
 | 
						|
"""
 | 
						|
tau = []
 | 
						|
f_c = []
 | 
						|
fit = []
 | 
						|
fit_amf = []
 | 
						|
for ID in identifier:
 | 
						|
    #print(ID)
 | 
						|
    amf = np.load('amf_%s.npy' %ID)
 | 
						|
    gain = np.load('gain_%s.npy' %ID)
 | 
						|
 | 
						|
    sinv, sinc = curve_fit(gain_curve_fit, amf, gain)
 | 
						|
    #print('tau:', sinv[0])
 | 
						|
    tau.append(sinv[0])
 | 
						|
    f_cutoff = abs(1 / (2*np.pi*sinv[0]))
 | 
						|
    #print('f_cutoff:', f_cutoff)
 | 
						|
    f_c.append(f_cutoff)
 | 
						|
    fit.append(gain_curve_fit(amf, *sinv))
 | 
						|
    fit_amf.append(amf)
 | 
						|
"""
 | 
						|
tau_uniform = []
 | 
						|
f_c_uniform = []
 | 
						|
fit_uniform = []
 | 
						|
fit_amf_uniform = []
 | 
						|
for ID in identifier_uniform:
 | 
						|
    #print(ID)
 | 
						|
    amf = np.load('amf_%s.npy' %ID)
 | 
						|
    gain = np.load('gain_%s.npy' %ID)
 | 
						|
 | 
						|
    sinv, sinc = curve_fit(gain_curve_fit, amf, gain)
 | 
						|
    #print('tau:', sinv[0])
 | 
						|
    tau_uniform.append(sinv[0])
 | 
						|
    f_cutoff = abs(1 / (2*np.pi*sinv[0]))
 | 
						|
    #print('f_cutoff:', f_cutoff)
 | 
						|
    f_c_uniform.append(f_cutoff)
 | 
						|
    fit_uniform.append(gain_curve_fit(amf, *sinv))
 | 
						|
    fit_amf_uniform.append(amf)
 | 
						|
 | 
						|
colors_uniform = plt.cm.flag(np.linspace(0.2,0.8,len(fit_uniform)))
 | 
						|
#colors = plt.cm.flag(np.linspace(0.2,0.8,len(fit)))
 | 
						|
 | 
						|
# for ff ,f in enumerate(fit):
 | 
						|
#     ax.plot(fit_amf[ff], fit[ff],color =  colors[ff])
 | 
						|
#     ax.axvline(x=f_c[ff], ymin=0, ymax=5, ls = '-', alpha = 0.5, color= colors[ff])#colors_uniform[ff])
 | 
						|
 | 
						|
for ff, f in enumerate(fit_uniform):
 | 
						|
    ax.plot(fit_amf_uniform[ff], fit_uniform[ff], color =  colorss[ff]) #colors_uniform[ff])
 | 
						|
    ax.axvline(x=f_c_uniform[ff], ymin=0, ymax=5, ls = '-', alpha = 0.5, color= colorss[ff])#colors_uniform[ff])
 | 
						|
 | 
						|
ax.set_xscale('log')
 | 
						|
ax.set_yscale('log')
 | 
						|
ax.set_title('gaincurve_average_allfish')
 | 
						|
ax.set_ylabel('gain [Hz/(mV/cm)]')
 | 
						|
ax.set_xlabel('envelope_frequency [Hz]')
 | 
						|
ax.set_ylim(0.0008, )
 | 
						|
ax.legend()
 | 
						|
 | 
						|
plt.show()
 | 
						|
embed()
 |