jar_project/apteronotus_code/sin_all_uniform.py
2020-09-29 20:27:26 +02:00

119 lines
3.4 KiB
Python

import matplotlib.pyplot as plt
import numpy as np
import pylab
from IPython import embed
from scipy.optimize import curve_fit
from jar_functions import gain_curve_fit
from jar_functions import avgNestedLists
import matplotlib as mpl
from matplotlib import cm
identifier_uniform = ['2018lepto1',
# '2018lepto4',
# '2018lepto5',
#'2018lepto76',
'2018lepto98',
# '2019lepto03',
'2019lepto24',
#'2019lepto27',
# '2019lepto30',
'2020lepto04',
# '2020lepto06',
# '2020lepto16',
'2020lepto19',
# '2020lepto20'
]
identifier = ['2018lepto1',
'2018lepto4',
'2018lepto5',
'2018lepto76',
'2018lepto98',
'2019lepto03',
'2019lepto24',
'2019lepto27',
'2019lepto30',
'2020lepto04',
'2020lepto06',
'2020lepto16',
'2020lepto19',
'2020lepto20'
]
amf = [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1]
#colors = ['dimgray', 'dimgrey', 'gray', 'grey', 'darkgray', 'darkgrey', 'silver', 'lightgray', 'lightgrey', 'gainsboro', 'whitesmoke']
colorss = ['g', 'b', 'r', 'y', 'c', 'm', 'k']
all = []
new_all = []
for ident in identifier:
data = np.load('gain_%s.npy' %ident)
all.append(data)
for ident in identifier_uniform:
data = np.load('gain_%s.npy' % ident)
new_all.append(data)
av = avgNestedLists(all)
new_av = avgNestedLists(new_all)
fig = plt.figure()
ax = fig.add_subplot(111)
#ax.plot(amf, av, 'o', color = 'orange', label = 'normal')
ax.plot(amf, new_av, 'o', label = 'uniformed')
"""
tau = []
f_c = []
fit = []
fit_amf = []
for ID in identifier:
#print(ID)
amf = np.load('amf_%s.npy' %ID)
gain = np.load('gain_%s.npy' %ID)
sinv, sinc = curve_fit(gain_curve_fit, amf, gain)
#print('tau:', sinv[0])
tau.append(sinv[0])
f_cutoff = abs(1 / (2*np.pi*sinv[0]))
#print('f_cutoff:', f_cutoff)
f_c.append(f_cutoff)
fit.append(gain_curve_fit(amf, *sinv))
fit_amf.append(amf)
"""
tau_uniform = []
f_c_uniform = []
fit_uniform = []
fit_amf_uniform = []
for ID in identifier_uniform:
#print(ID)
amf = np.load('amf_%s.npy' %ID)
gain = np.load('gain_%s.npy' %ID)
sinv, sinc = curve_fit(gain_curve_fit, amf, gain)
#print('tau:', sinv[0])
tau_uniform.append(sinv[0])
f_cutoff = abs(1 / (2*np.pi*sinv[0]))
#print('f_cutoff:', f_cutoff)
f_c_uniform.append(f_cutoff)
fit_uniform.append(gain_curve_fit(amf, *sinv))
fit_amf_uniform.append(amf)
colors_uniform = plt.cm.flag(np.linspace(0.2,0.8,len(fit_uniform)))
#colors = plt.cm.flag(np.linspace(0.2,0.8,len(fit)))
# for ff ,f in enumerate(fit):
# ax.plot(fit_amf[ff], fit[ff],color = colors[ff])
# ax.axvline(x=f_c[ff], ymin=0, ymax=5, ls = '-', alpha = 0.5, color= colors[ff])#colors_uniform[ff])
for ff, f in enumerate(fit_uniform):
ax.plot(fit_amf_uniform[ff], fit_uniform[ff], color = colorss[ff]) #colors_uniform[ff])
ax.axvline(x=f_c_uniform[ff], ymin=0, ymax=5, ls = '-', alpha = 0.5, color= colorss[ff])#colors_uniform[ff])
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_title('gaincurve_average_allfish')
ax.set_ylabel('gain [Hz/(mV/cm)]')
ax.set_xlabel('envelope_frequency [Hz]')
ax.set_ylim(0.0008, )
ax.legend()
plt.show()
embed()