75 lines
1.6 KiB
Python
75 lines
1.6 KiB
Python
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import pylab
|
|
from IPython import embed
|
|
from scipy.optimize import curve_fit
|
|
from jar_functions import gain_curve_fit
|
|
from jar_functions import avgNestedLists
|
|
|
|
|
|
identifier = ['2018lepto1',
|
|
'2018lepto4',
|
|
'2018lepto5',
|
|
'2018lepto76',
|
|
'2018lepto98',
|
|
'2019lepto03',
|
|
'2019lepto24',
|
|
'2019lepto27',
|
|
'2019lepto30',
|
|
'2020lepto04',
|
|
'2020lepto06',
|
|
'2020lepto16',
|
|
'2020lepto19',
|
|
'2020lepto20'
|
|
]
|
|
|
|
amf = [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1]
|
|
|
|
all = []
|
|
|
|
for ident in identifier:
|
|
data = np.load('gain_%s.npy' %ident)
|
|
all.append(data)
|
|
|
|
av = avgNestedLists(all)
|
|
|
|
fig = plt.figure()
|
|
ax = fig.add_subplot(111)
|
|
ax.plot(amf, av, 'o')
|
|
|
|
#plt.show()
|
|
|
|
tau = []
|
|
f_c = []
|
|
fit = []
|
|
fit_amf = []
|
|
for ID in identifier:
|
|
print(ID)
|
|
amf = np.load('amf_%s.npy' %ID)
|
|
gain = np.load('gain_%s.npy' %ID)
|
|
|
|
sinv, sinc = curve_fit(gain_curve_fit, amf, gain)
|
|
#print('tau:', sinv[0])
|
|
tau.append(sinv[0])
|
|
f_cutoff = abs(1 / (2*np.pi*sinv[0]))
|
|
print('f_cutoff:', f_cutoff)
|
|
f_c.append(f_cutoff)
|
|
fit.append(gain_curve_fit(amf, *sinv))
|
|
fit_amf.append(amf)
|
|
|
|
#for ff ,f in enumerate(fit):
|
|
# ax.plot(fit_amf[ff], fit[ff])
|
|
ax.set_xscale('log')
|
|
ax.set_yscale('log')
|
|
ax.set_title('gaincurve_average_allfish')
|
|
ax.set_ylabel('gain [Hz/(mV/cm)]')
|
|
ax.set_xlabel('envelope_frequency [Hz]')
|
|
ax.set_ylim(0.0008, )
|
|
ax.plot(f_c, np.full(len(identifier), 0.0015), 'o', label = 'cutoff frequencies')
|
|
ax.legend()
|
|
|
|
plt.show()
|
|
|
|
embed()
|
|
|