import matplotlib.pyplot as plt import numpy as np import os import nix_helpers as nh from IPython import embed from matplotlib.mlab import specgram #from tqdm import tqdm from jar_functions import parse_stimuli_dat from jar_functions import norm_function_eigen from jar_functions import mean_noise_cut_eigen from jar_functions import get_time_zeros from jar_functions import import_data_eigen from scipy.signal import savgol_filter #plt.rcParams.update({'font.size': 18}) base_path = 'D:\\jar_project\\JAR\\eigenmannia\\deltaf' #2015eigen8 no nix files identifier = [#'2013eigen13', '2015eigen16'] #,'2015eigen17', '2015eigen19', '2020eigen22','2020eigen32'] response = [] deltaf = [] specs = [] jars = [] sub_times = [] sub_lim0 = [] sub_lim1 = [] for ID in identifier: for dataset in os.listdir(os.path.join(base_path, ID)): datapath = os.path.join(base_path, ID, dataset, '%s.nix' % dataset) #print(datapath) stimuli_dat = os.path.join(base_path, ID, dataset, 'manualjar-eod.dat') #print(stimuli_dat) delta_f, duration = parse_stimuli_dat(stimuli_dat) dur = int(duration[0][0:2]) if delta_f == [-2.0] or delta_f == [2.0] or delta_f == [-10.0] or delta_f == [10.0]: print(delta_f) data, pre_data, dt = import_data_eigen(datapath) # hstack concatenate: 'glue' pre_data and data dat = np.hstack((pre_data, data)) # data nfft = 2 ** 17 spec, freqs, times = specgram(dat[0], Fs=1 / dt, detrend='mean', NFFT=nfft, noverlap=nfft * 0.95) dbspec = 10.0 * np.log10(spec) # in dB power = dbspec[:, 25] fish_p = power[(freqs > 200) & (freqs < 1000)] fish_f = freqs[(freqs > 200) & (freqs < 1000)] index = np.argmax(fish_p) eodf = fish_f[index] eodf4 = eodf * 4 lim0 = eodf4 - 42 lim1 = eodf4 + 42 df = freqs[1] - freqs[0] ix0 = int(np.floor(lim0 / df)) # back to index ix1 = int(np.ceil(lim1 / df)) # back to index spec4 = dbspec[ix0:ix1, :] freq4 = freqs[ix0:ix1] jar4 = freq4[np.argmax(spec4, axis=0)] # all freqs at max specs over axis 0 cut_time_jar = times[:len(jar4)] ID_delta_f = [ID, str(delta_f[0]).split('.')[0]] b = [] for idx, i in enumerate(times): if i > 0 and i < 10: b.append(jar4[idx]) j = [] for idx, i in enumerate(times): if i > 15 and i < 55: j.append(jar4[idx]) r = np.median(j) - np.median(b) print('response:', r) deltaf.append(delta_f[0]) response.append(r) specs.append(spec4) jars.append(jar4) sub_times.append(cut_time_jar) sub_lim0.append(lim0) sub_lim1.append(lim1) if len(specs) == 4: break # plt.imshow(specs[0], cmap='jet', origin='lower', extent=(times[0], times[-1], sub_lim0[0], sub_lim1[1]), aspect='auto', vmin=-80, vmax=-10) # plt.plot(sub_times[0], jars[0], 'k', label = 'peak detection trace', lw = 2) # plt.hlines(y=lim0 + 5, xmin=10, xmax=70, lw=4, color='yellow', label='stimulus duration') # plt.hlines(y=lim0 + 5, xmin=0, xmax=10, lw=4, color='red', label='pause') # plt.title('spectogram %s, deltaf: %sHz' %tuple(ID_delta_f)) # plt.xlim(times[0],times[-1]) fig = plt.figure(figsize = (8.27, 11.69/2)) ax0 = fig.add_subplot(221) ax0.imshow(specs[0], cmap='jet', origin='lower', extent=(times[0], times[-1], sub_lim0[0], sub_lim1[0]), aspect='auto', vmin=-80, vmax=-10) #ax0.plot(sub_times[0], jars[0], 'k', label = 'peak detection trace', lw = 2) ax0.set_xlim(times[0],times[-1]) ax0.set_ylabel('frequency [Hz]') ax0.axes.xaxis.set_ticklabels([]) ax0.set_title('∆F -2 Hz') ax1 = fig.add_subplot(222) ax1.imshow(specs[2], cmap='jet', origin='lower', extent=(times[0], times[-1], sub_lim0[2], sub_lim1[2]), aspect='auto', vmin=-80, vmax=-10) #ax1.plot(sub_times[2], jars[2], 'k', label = 'peak detection trace', lw = 2) ax1.set_xlim(times[0],times[-1]) ax1.axes.xaxis.set_ticklabels([]) #ax1.axes.yaxis.set_ticklabels([]) ax1.set_title('∆F 2 Hz') ax1.get_shared_y_axes().join(ax0, ax1) ax2 = fig.add_subplot(223) ax2.imshow(specs[1], cmap='jet', origin='lower', extent=(times[0], times[-1], sub_lim0[1], sub_lim1[1]), aspect='auto', vmin=-80, vmax=-10) #ax2.plot(sub_times[1], jars[1], 'k', label = 'peak detection trace', lw = 2) ax2.set_xlim(times[0],times[-1]) ax2.set_ylabel('frequency [Hz]') ax2.set_xlabel('time [s]') ax2.set_title('∆F -10 Hz') ax3 = fig.add_subplot(224) ax3.imshow(specs[3], cmap='jet', origin='lower', extent=(times[0], times[-1], sub_lim0[3], sub_lim1[3]), aspect='auto', vmin=-80, vmax=-10) #ax3.plot(sub_times[3], jars[3], 'k', label = 'peak detection trace', lw = 2) ax3.set_xlim(times[0],times[-1]) ax3.set_xlabel('time [s]') #ax3.axes.yaxis.set_ticklabels([]) ax3.set_title('∆F 10 Hz') plt.subplots(sharex = True, sharey = True) plt.show() embed()