import matplotlib.pyplot as plt import numpy as np import pylab from IPython import embed from scipy.optimize import curve_fit from matplotlib.mlab import specgram import os from jar_functions import gain_curve_fit plt.rcParams.update({'font.size': 10}) identifier = ['2018lepto1', #'2018lepto4', '2018lepto5', '2018lepto76', '2018lepto98', #'2019lepto03', '2019lepto24', #'2019lepto27', #'2019lepto30', #'2020lepto04', '2020lepto06', #'2020lepto16', #'2020lepto19', #'2020lepto20' ] amfs = [] gains = [] taus = [] f_cs = [] predicts = [] for ID in identifier: predict = [] print(ID) amf = np.load('amf_%s.npy' %ID) amfs.append(amf) gain = np.load('gain_%s.npy' %ID) gains.append(gain) sinv, sinc = curve_fit(gain_curve_fit, amf, gain, [2, 3]) #print('tau:', sinv[0]) taus.append(sinv[0]) f_cutoff = abs(1 / (2*np.pi*sinv[0])) print('f_cutoff:', f_cutoff) f_cs.append(f_cutoff) # predict of gain for f in amf: G = np.max(gain) / np.sqrt(1 + (2 * ((np.pi * f * sinv[0]) ** 2))) predict.append(G) predicts.append(predict) sort = sorted(zip(f_cs, identifier)) print(sort) # order of plotting: 2018lepto1, 2018lepto5, 2018lepto76, 2018lepto98, 2019lepto24, 2020lepto06 # order of f_c: 2019lepto24, 2020lepto06, 2018lepto98, 2018lepto76, 2018lepto1, 2018lepto5 fig = plt.figure(figsize=(8.27,11.69)) ax0 = fig.add_subplot(321) fig.text(0.05, 0.5, 'gain [Hz/(mV/cm)]', ha='center', va='center', rotation='vertical') fig.text(0.5, 0.04, 'envelope frequency [Hz]', ha='center', va='center') ax0.set_xlim(0.0007, 1.5) ax0.set_ylim(0.001, 10) ax0.plot(amfs[4], gains[4],'o' , label = 'gain') ax0.plot(amfs[4], predicts[4], label = 'fit') ax0.axvline(x=f_cs[4], ymin=0, ymax=5, ls='-', alpha=0.5, label = 'cutoff frequency') ax0.set_xscale('log') ax0.set_yscale('log') ax0.axes.xaxis.set_ticklabels([]) ax1 = fig.add_subplot(322) ax1.set_xlim(0.0007, 1.5) ax1.set_ylim(0.001, 10) ax1.plot(amfs[5], gains[5],'o' , label = 'gain') ax1.plot(amfs[5], predicts[5], label = 'fit') ax1.axvline(x=f_cs[5], ymin=0, ymax=5, ls='-', alpha=0.5, label = 'cutoff frequency') ax1.set_xscale('log') ax1.set_yscale('log') ax1.axes.yaxis.set_ticklabels([]) ax1.axes.xaxis.set_ticklabels([]) ax2 = fig.add_subplot(323) ax2.set_xlim(0.0007, 1.5) ax2.set_ylim(0.001, 10) ax2.plot(amfs[3], gains[3],'o' , label = 'gain') ax2.plot(amfs[3], predicts[3], label = 'fit') ax2.axvline(x=f_cs[3], ymin=0, ymax=5, ls='-', alpha=0.5, label = 'cutoff frequency') ax2.set_xscale('log') ax2.set_yscale('log') ax2.axes.xaxis.set_ticklabels([]) ax3 = fig.add_subplot(324) ax3.set_xlim(0.0007, 1.5) ax3.set_ylim(0.001, 10) ax3.plot(amfs[2], gains[2],'o' , label = 'gain') ax3.plot(amfs[2], predicts[2], label = 'fit') ax3.axvline(x=f_cs[2], ymin=0, ymax=5, ls='-', alpha=0.5, label = 'cutoff frequency') ax3.set_xscale('log') ax3.set_yscale('log') ax3.axes.yaxis.set_ticklabels([]) ax3.axes.xaxis.set_ticklabels([]) ax4 = fig.add_subplot(325) ax4.set_xlim(0.0007, 1.5) ax4.set_ylim(0.001, 10) ax4.plot(amfs[0], gains[0],'o' , label = 'gain') ax4.plot(amfs[0], predicts[0], label = 'fit') ax4.axvline(x=f_cs[0], ymin=0, ymax=5, ls='-', alpha=0.5, label = 'cutoff frequency') ax4.set_xscale('log') ax4.set_yscale('log') ax5 = fig.add_subplot(326) ax5.set_xlim(0.0007, 1.5) ax5.set_ylim(0.001, 10) ax5.plot(amfs[1], gains[1],'o' , label = 'gain') ax5.plot(amfs[1], predicts[1], label = 'fit') ax5.axvline(x=f_cs[1], ymin=0, ymax=5, ls='-', alpha=0.5, label = 'cutoff frequency') ax5.set_xscale('log') ax5.set_yscale('log') ax5.axes.yaxis.set_ticklabels([]) #plt.legend(loc = 'lower left') plt.show() #np.save('f_c', f_c) #np.save('tau', tau)