from scipy import signal import matplotlib.pyplot as plt import numpy as np import pylab from IPython import embed from scipy.optimize import curve_fit from jar_functions import sin_response from jar_functions import mean_noise_cut from jar_functions import gain_curve_fit def take_second(elem): # function for taking the names out of files return elem[1] identifier = [#'2018lepto1', #'2018lepto4', #'2018lepto5', #'2018lepto76', #'2018lepto98', #'2019lepto03', #'2019lepto24', #'2019lepto27', #'2019lepto30', '2020lepto04', #'2020lepto06', #'2020lepto16', #'2020lepto19', #'2020lepto20' ] for ident in identifier: predict = [] rootmeansquare = [] threshold = [] gain = [] mgain = [] phaseshift = [] mphaseshift = [] amfreq = [] amf = [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1] currf = None idxlist = [] data = sorted(np.load('%s files.npy' %ident), key = take_second) # list with filenames in it for i, d in enumerate(data): dd = list(d) jar = np.load('%s.npy' %dd) # load data for every file name jm = jar - np.mean(jar) # low-pass filtering by subtracting mean print(dd) time = np.load('%s time.npy' %dd) # time file dt = time[1] - time[0] n = int(1/float(d[1])/dt) cutf = mean_noise_cut(jm, n = n) cutt = time #plt.plot(time, jm-cutf, label='cut amfreq') #plt.plot(time, jm, label='spec') #plt.legend() #plt.show() sinv, sinc = curve_fit(sin_response, time, jm - cutf, [float(d[1]), 2, 0.5]) # fitting print('frequency, phaseshift, amplitude:', sinv) p = np.sqrt(sinv[1]**2) A = np.sqrt(sinv[2] ** 2) f = float(d[1]) phaseshift.append(p) gain.append(A) if f not in amfreq: amfreq.append(f) # root mean square RMS = np.sqrt(np.mean(((jm - cutf) - sin_response(cutt, sinv[0], sinv[1], sinv[2]))**2)) thresh = A / np.sqrt(2) #plt.plot(time, sin_response(time, *sinv), label='fit: f=%f, p=%.2f, A=%.2f' % tuple(sinv)) #plt.legend() #plt.show() # mean over same amfreqs for phase and gain if currf is None or currf == d[1]: currf = d[1] idxlist.append(i) else: # currf != f meanf = [] # lists to make mean of meanp = [] meanrms = [] meanthresh = [] for x in idxlist: meanf.append(gain[x]) meanp.append(phaseshift[x]) meanrms.append(RMS) meanthresh.append(thresh) meanedf = np.mean(meanf) meanedp = np.mean(meanp) meanedrms = np.mean(meanrms) meanedthresh = np.mean(meanthresh) mgain.append(meanedf) mphaseshift.append(meanedp) rootmeansquare.append(meanedrms) threshold.append(meanedthresh) currf = d[1] # set back for next loop idxlist = [i] meanf = [] meanp = [] meanrms = [] meanthresh = [] for y in idxlist: meanf.append(gain[y]) meanp.append(phaseshift[y]) meanrms.append(RMS) meanthresh.append(thresh) meanedf = np.mean(meanf) meanedp = np.mean(meanp) meanedrms = np.mean(meanrms) meanedthresh = np.mean(meanthresh) mgain.append(meanedf) mphaseshift.append(meanedp) rootmeansquare.append(meanedrms) threshold.append(meanedthresh) # predict of gain for f in amf: G = np.max(mgain) / np.sqrt(1 + (2*((np.pi*f*3.14)**2))) predict.append(G) # as arrays mgain_arr = np.array(mgain) amfreq_arr = np.array(amfreq) rootmeansquare_arr = np.array(rootmeansquare) threshold_arr = np.array(threshold) # condition needed to be fulfilled: RMS < threshold or RMS < mean(RMS) idx_arr = (rootmeansquare_arr < threshold_arr) | (rootmeansquare_arr < np.mean(rootmeansquare_arr)) fig = plt.figure() ax0 = fig.add_subplot(2, 1, 1) ax0.plot(amfreq_arr[idx_arr], mgain_arr[idx_arr], 'o') #ax0.plot(amf, predict) ax0.set_yscale('log') ax0.set_xscale('log') ax0.set_title('%s' % data[0][0]) ax0.set_ylabel('gain [Hz/(mV/cm)]') ax0.set_xlabel('envelope_frequency [Hz]') #plt.savefig('%s gain' % data[0][0]) ax1 = fig.add_subplot(2, 1, 2, sharex = ax0) ax1.plot(amfreq, threshold, 'o-', label = 'threshold', color = 'b') ax1.set_xscale('log') ax1.plot(amfreq, rootmeansquare, 'o-', label = 'RMS', color ='orange') ax1.set_xscale('log') ax1.set_xlabel('envelope_frequency [Hz]') ax1.set_ylabel('RMS [Hz]') plt.legend() pylab.show() np.save('gain_%s' %ident, mgain_arr[idx_arr]) np.save('amf_%s' %ident, amfreq_arr[idx_arr]) embed()