import os import numpy as np import matplotlib.pyplot as plt from IPython import embed from jar_functions import mean_noise_cut from matplotlib.mlab import specgram import DataLoader as dl #print(np.logspace(-3, 1, 10)) '''for idx, dataset in enumerate(datasets): datapath = os.path.join(base_path, dataset) for info, key, time, data in dl.iload_traces(datapath, repro='Beats', before=0.0, after=0.0): ''' '''base_path = 'D:\\jar_project\\JAR' #nicht: -5Hz delta f, 19-aa, 22-ae, 22-ad (?) datasets = [#'2020-06-19-aa', #-5Hz delta f, horrible fit #'2020-06-19-ab', #-5Hz delta f, bad fit #'2020-06-22-aa', #-5Hz delta f, bad fit #'2020-06-22-ab', #-5Hz delta f, bad fit #'2020-06-22-ac', #-15Hz delta f, good fit #'2020-06-22-ad', #-15Hz delta f, horrible fit #'2020-06-22-ae', #-15Hz delta f, horrible fit '2020-06-22-af', #-15Hz delta f, good fit #'2020-07-21-ak' #sin ] for idx, dataset in enumerate(datasets): datapath = os.path.join(base_path, dataset) for info, key, time, data in dl.iload_traces(datapath, repro='Beats', before=0.0, after=0.0): print(data[0]) dat = np.arange(100) for d in range(int(len(data)/10)): nfft = 2 spec, freqs, times = specgram(data[0][d*10:(d+1)*10], NFFT=nfft, noverlap=nfft*0.5) #print(freqs) #print(times) embed()''' g = [1.2917623576698833, -5.479055166593157, -2.689492238578325, -0.11604244418416806, -0.05353823781665627] a = [0.2, 0.002, 0.02, 0.5, 1.0] np.save('g.npy', g) print(np.load('g.npy'))