import matplotlib.pyplot as plt import numpy as np import os import nix_helpers as nh from IPython import embed from matplotlib.mlab import specgram # from tqdm import tqdm from jar_functions import parse_stimuli_dat from jar_functions import norm_function_eigen from jar_functions import mean_noise_cut_eigen from jar_functions import get_time_zeros from jar_functions import import_data_eigen from jar_functions import get_new_zero_crossings from scipy.signal import savgol_filter base_path = 'D:\\jar_project\\JAR\\eigenmannia\\deltaf' identifier = ['2013eigen13', '2015eigen16', '2015eigen17', '2015eigen19', '2020eigen22', '2020eigen32'] response = [] deltaf = [] for ID in identifier: for dataset in os.listdir(os.path.join(base_path, ID)): datapath = os.path.join(base_path, ID, dataset, '%s.nix' % dataset) print(datapath) stimuli_dat = os.path.join(base_path, ID, dataset, 'manualjar-eod.dat') df, duration = parse_stimuli_dat(stimuli_dat) dur = int(duration[0][0:2]) print(df) data, pre_data, dt = import_data_eigen(datapath) # data nfft = 2 ** 17 spec_0, freqs_0, times_0 = specgram(data[0], Fs=1 / dt, detrend='mean', NFFT=nfft, noverlap=nfft * 0.95) dbspec_0 = 10.0 * np.log10(spec_0) # in dB power_0 = dbspec_0[:, 25] fish_p_0 = power_0[(freqs_0 > 200) & (freqs_0 < 1000)] fish_f_0 = freqs_0[(freqs_0 > 200) & (freqs_0 < 1000)] index_0 = np.argmax(fish_p_0) eodf_0 = fish_f_0[index_0] eodf4_0 = eodf_0 * 4 lim0_0 = eodf4_0 - 20 lim1_0 = eodf4_0 + 20 df_0 = freqs_0[1] - freqs_0[0] ix0_0 = int(np.floor(lim0_0 / df_0)) # back to index ix1_0 = int(np.ceil(lim1_0 / df_0)) # back to index spec4_0 = dbspec_0[ix0_0:ix1_0, :] freq4_0 = freqs_0[ix0_0:ix1_0] jar4 = freq4_0[np.argmax(spec4_0, axis=0)] # all freqs at max specs over axis 0 jm = jar4 - np.mean(jar4) # data we take cut_time_jar = times_0[:len(jar4)] # pre_data: base with nh.read_eod time, eod = nh.read_eod(datapath, duration=2000) # anstatt dem import data mit tag manual jar - dann sollte onset wirklich bei 10 sec sein wl = int(0.001 / (time[1] - time[0]) + 1) filtered_eod = savgol_filter(eod, wl, 5, deriv=0, delta=time[1] - time[0]) zero_line_threshold = np.mean(eod) time_zero, zero_idx = get_new_zero_crossings(time, filtered_eod, threshold=zero_line_threshold) eod_interval = np.diff(time_zero) time_zero = time_zero[:-1] center_eod_time = time_zero + 0.5 * eod_interval frequencies = 1 / eod_interval j = [] for idx, i in enumerate(times_0): if i > 45 and i < 55: j.append(jm[idx]) b = [] for idx, i in enumerate(time_zero): if i < 10: b.append(frequencies[idx]) bm = b - np.mean(b) r = np.median(j) - np.median(bm) embed() res_df = sorted(zip(deltaf, response)) # np.save('res_df_%s_new' % ID, res_df) # problem: rohdaten(data, pre_data) lassen sich auf grund ihrer 1D-array struktur nicht savgol filtern # diese bekomm ich nur über specgram in form von freq / time auftragen, was nicht mehr savgol gefiltert werden kann # jedoch könnte ich trotzdem einfach aus jar4 response herauslesen wobei dies dann weniger gefiltert wäre