import matplotlib.pyplot as plt import os import glob import IPython import numpy as np from IPython import embed from scipy.optimize import curve_fit from jar_functions import parse_dataset from jar_functions import parse_infodataset from jar_functions import mean_loops from jar_functions import mean_noise_cut from jar_functions import norm_function from jar_functions import step_response datasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ab\\beats-eod.dat')), (os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))] infodatasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\info.dat'))] time = [] frequency_mean = [] constant_factors = [] time_constants = [] start = -10 stop = 200 timespan = 210 for infodataset in infodatasets: i= parse_infodataset(infodataset) identifier = i[0] for dataset in datasets: #input of the function frequency, time, amplitude, eodf, deltaf, stimulusf, duration = parse_dataset(dataset) mf , tnew = mean_loops(start, stop, timespan, frequency, time) dm = np.mean(duration) frequency_mean.append(mf) time.append(tnew) for i in range(len(frequency_mean)): cf, ct = mean_noise_cut(frequency_mean[i], time[i], n=1000) cf_arr = np.array(cf) ct_arr = np.array(ct) norm = norm_function(cf_arr, ct_arr, onset_point = dm - dm, offset_point = dm) #dm-dm funktioniert nur wenn onset = 0 sec plt.plot(ct_arr, norm) #, label='n=%d' % n) sv, sc = curve_fit(step_response, ct_arr[ct_arr < 100], norm[ct_arr < 100]) #step_values and step_cov a = sv[:2] tau = np.array(sorted(sv[2:], reverse=False)) values = np.array([a, tau]) values_flat = values.flatten() plt.plot(ct_arr [ct_arr < 100], step_response(ct_arr, *sv)[ct_arr < 100], 'r-', label='fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(values_flat)) print('a1, a2, tau1, tau2', values_flat) constant_factors.append(a) time_constants.append(tau) const_line = plt.axhline(y=0.632) plt.xlim([-10,220]) plt.xlabel('time [s]') plt.ylabel('rel. JAR magnitude') plt.title('relative JAR') plt.savefig('relative JAR') plt.legend(loc = 'lower right') plt.show() embed() # alle daten einlesen durch große for schleife (auch average über alle fische?) # für einzelne fische fit kontrollieren #Fragen: wie offset point wenn nicht start bei 0 sec? #wie a1, tau1,.. ohne array? (funkt wegen dimensionen wenn ichs nochmal in liste appende)