import os #compability with windows from IPython import embed import numpy as np def parse_dataset(dataset_name): assert(os.path.exists(dataset_name)) #see if data exists f = open(dataset_name, 'r') #open data we gave in lines = f.readlines() #read data f.close() #? # metadata lists for every loop eodfs = [] deltafs = [] stimulusfs = [] # data itself times = [] frequencies = [] amplitudes = [] # temporary lists with data we put in the lists above time = [] ampl = [] freq = [] for i in range(len(lines)): l = lines[i].strip() #all lines of textdata, exclude all empty lines (empty () default for spacebar) if "#" in l and "EODf" in l: #if line starts with # EODf: eodfs.append(float(l.split(':')[-1].strip()[:-2])) #append: line splitted by ':' the 2nd part ([-1], if "#" in l and "Delta f" in l: #which got striped so we sure there is no space at the end, deltafs.append(float(l.split(':')[-1].strip()[:-2])) #from that all expect the last two signs (Hz unit) if "#" in l and "StimulusFrequency" in l: #this for different metadata in different lists stimulusfs.append(float(l.split(':')[-1].strip()[:-2])) if '#Key' in l: if len(time) != 0: #therefore empty in the first round times.append(time) #2nd loop means time != 0, so we put the times/amplitudes/frequencies to amplitudes.append(ampl) #the data of the first loop frequencies.append(freq) time = [] #temporary lists to overwrite the lists with the same name we made before ampl = [] #so they are empty again freq = [] if len(l) > 0 and l[0] is not '#': #line not empty and doesnt start with # temporary = list(map(float, l.split())) #temporary list where we got 3 index splitted by spacebar, map to find them time.append(temporary[0]) #temporary lists with the data at that place, respectively freq.append(temporary[1]) ampl.append(temporary[2]) times.append(time) #append data from one list to another amplitudes.append(ampl) #these append the data from the first loop to the final lists, because we overwrite them (?) frequencies.append(freq) return times, frequencies, amplitudes, eodfs, deltafs, stimulusfs #output of the function def mean_noise_cut(frequencies, time, n): cutf = [] cutt = [] for k in np.arange(0, len(frequencies), n): t = time[k] f = np.mean(frequencies[k:k+n]) cutf.append(f) cutt.append(t) return cutf, cutt def step_response(t, a1, a2, tau1, tau2): r_step = a1*(1 - np.exp(-t/tau1)) + a2*(1- np.exp(-t/tau2)) return r_step # plotten mit manual values for a1, ... # auch mal a1 oder a2 auf Null setzen. def base_eod(frequencies, time, onset_point): base_eod = [] onset_end = onset_point - 10 base = np.mean(frequencies[(time >= onset_end) & (time < onset_point)]) base_eod.append(base) return base_eod def JAR_eod(frequencies, time, offset_point): jar_eod = [] offset_start = offset_point - 10 jar = np.mean(frequencies[(time >= offset_start) & (time < offset_point)]) jar_eod.append(jar) return jar_eod