import matplotlib.pyplot as plt import os import glob import IPython import numpy as np from IPython import embed from scipy.optimize import curve_fit from jar_functions import parse_dataset from jar_functions import mean_noise_cut from jar_functions import step_response from jar_functions import JAR_eod from jar_functions import base_eod from jar_functions import mean_loops from jar_functions import norm_function datasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))] eodf = [] deltaf = [] stimulusf = [] time = [] frequency_mean= [] amplitude = [] start = -10 stop = 200 timespan = 210 for dataset in datasets: #input of the function t, f, a, e, d, s = parse_dataset(dataset) mf , tnew = mean_loops(start, stop, timespan, f, t) embed() for i in range(len(mf)): for n in [500, 1000, 1500]: cf, ct = mean_noise_cut(mf[i], time[i], n=n) cf_arr = np.array(cf) ct_arr = np.array(ct) norm = norm_function(cf_arr, ct_arr, onset_point = 0, offset_point = 100) plt.plot(ct_arr, norm, label='n=%d' % n) #r_step = step_response(t=ct_arr, a1=0.58, a2=0.47, tau1=11.7, tau2=60) #plt.plot(ct_arr[ct_arr < 100], r_step[ct_arr < 100], label='fit: n=%d' % n) step_values, step_cov = curve_fit(step_response, ct_arr[ct_arr < 100], norm [ct_arr < 100]) plt.plot(ct_arr [ct_arr < 100], step_response(ct_arr, *step_values)[ct_arr < 100], 'r-', label='fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(step_values)) print(step_values) const_line = plt.axhline(y=0.632) 'plotting' plt.xlim([-10,220]) #plt.ylim([400, 1000]) plt.xlabel('time [s]') plt.ylabel('rel. JAR magnitude') #plt.title('fit_function(a1=0)') #plt.savefig('fit_function(a1=0)') plt.legend(loc = 'lower right') plt.show() embed() # noch mehr in funktionen reinhauen (quasi nur noch plotting und funktionen einlesen) # zeitkonstanten nach groß und klein sortieren # onset dauer auslesen # ID aus info.dat auslesen # alle daten einlesen durch große for schleife (auch average über alle fische?) # für einzelne fische fit kontrollieren