import matplotlib.pyplot as plt import os import glob import IPython import numpy as np from IPython import embed from jar_functions import parse_dataset datasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ab\\beats-eod.dat'))] # (os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))] eodf = [] deltaf = [] stimulusf = [] time = [] frequency = [] amplitude = [] for dataset in datasets: t, f, a, e, d, s= parse_dataset(dataset) time.append(t) frequency.append(f) amplitude.append(a) eodf.append(e) deltaf.append(d) stimulusf.append(s) mean = np.mean(frequency, axis=0) #embed() #evtl. normiert darstellen (frequency / baseline frequency?)? #Zeitkonstante: von sec. 0 bis 63%? relative JAR plt.plot(time, frequency) plt.xlabel('time [s]') plt.ylabel('frequency [Hz]') plt.xlim([-10,200]) plt.title('second try because first try was sold out') plt.show()