import os import numpy as np from IPython import embed import matplotlib.pyplot as plt import nix_helpers as nh from jar_functions import get_time_zeros from jar_functions import parse_dataset from jar_functions import mean_traces from jar_functions import mean_noise_cut_eigen from jar_functions import adjust_eodf base_path = 'D:\\jar_project\\JAR\\eigenmannia\\sin' identifier = ['2015eigen8', '2015eigen16','2015eigen17', '2015eigen19', '2015eigen15' # '2018lepto1', # '2018lepto4', # '2018lepto5', # '2018lepto76', # '2018lepto98', # '2019lepto03', # '2019lepto24', # '2019lepto27', # '2019lepto30', # '2020lepto04', # '2020lepto06', # '2020lepto16', # '2020lepto19', # '2020lepto20' ] eod = [] for ID in identifier: base = [] for dataset in os.listdir(os.path.join(base_path, ID)): if dataset == 'prerecordings': continue datapath = os.path.join(base_path, ID, dataset, 'beats-eod.dat') print(datapath) try: o = open(datapath) except IOError: continue frequency, time, amplitude, eodf, deltaf, stimulusf, duration, pause = parse_dataset(datapath) dm = np.mean(duration) pm = np.mean(pause) timespan = dm + pm start = np.mean([t[0] for t in time]) stop = np.mean([t[-1] for t in time]) mf, tnew = mean_traces(start, stop, timespan, frequency, time) # maybe fixed timespan/sampling rate cf, ct = mean_noise_cut_eigen(mf, tnew, 1250) f = [] for idx, i in enumerate(ct): if i > -45 and i < -5: f.append(cf[idx]) ff = np.mean(f) base.append(ff) #plt.plot(ct, cf) #plt.show() base_eod = np.mean(base) print(ID) print(base_eod) eod.append(base_eod) temp = np.load('temperature.npy') eod_temp = zip(eod, temp) Q10_eod = [] for et in eod_temp: Q10 = adjust_eodf(et[0], et[1]) Q10_eod.append(Q10) print('MAXI KING', np.max(Q10_eod)) print('MINI KING', np.min(Q10_eod)) embed()