import matplotlib.pyplot as plt import numpy as np import pylab from IPython import embed from scipy.optimize import curve_fit from scipy.optimize import curve_fit from matplotlib.mlab import specgram import os from jar_functions import import_data from jar_functions import import_amfreq from jar_functions import sin_response from jar_functions import mean_noise_cut from jar_functions import gain_curve_fit #plt.rcParams.update({'font.size': 10}) def take_second(elem): # function for taking the names out of files return elem[1] identifier = ['2015eigen8', '2015eigen15', '2015eigen16', '2015eigen17', '2015eigen19' ] for ident in identifier: times = [] jars = [] jms = [] amfreq = [] times1 = [] jars1 = [] jms1 = [] amfreq1 = [] amf = [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1] data = sorted(np.load('eigen_%s files.npy' %ident), key = take_second) # list with filenames in it for i, d in enumerate(data): dd = list(d) if dd[1] == '1' or dd[1] == '0.2' or dd[1] == '0.05' or dd[1] == '0.01' or dd[1] == '0.005' or dd[1] == '0.001': jar = np.load('eigen_%s.npy' %dd) # load data for every file name jm = jar - np.mean(jar) # low-pass filtering by subtracting mean time = np.load('eigen_%s time.npy' %dd) # time file dt = time[1] - time[0] n = int(1/float(d[1])/dt) cutf = mean_noise_cut(jm, n = n) cutt = time if dd[1] == '0.001': amfreq1.append(dd[1]) jars1.append(jm - cutf) jms1.append(jm) times1.append(time) if dd[1] not in amfreq: print(dd) amfreq.append(dd[1]) jars.append(jm - cutf) jms.append(jm) times.append(time) else: #print('1:', dd) amfreq1.append(dd[1]) jars1.append(jm - cutf) jms1.append(jm) times1.append(time) if len(jars) != 6: continue ssample = 100000 fig = plt.figure(figsize=(8.27, 11.69)) fig.suptitle('%s' % ident) fig.text(0.06, 0.5, 'fish frequency [Hz]', ha='center', va='center', rotation='vertical', color='C0') fig.text(0.97, 0.5, 'stimulus amplitude [mV/cm]', ha='center', va='center', rotation='vertical', color='red') fig.text(0.5, 0.04, 'time [s]', ha='center', va='center') ax0 = fig.add_subplot(611) print('absolute frequency shift 0.001Hz:', np.max(jars[0]) - np.min(jars[0])) ax0.plot(times[0], jars[0], zorder=20) # ax0.set_zorder(1) ax0.set_ylim(-12, 12) lower0 = 0 upper0 = 2000 x0 = np.linspace(lower0, upper0, sample) y0 = (sin_response(np.linspace(lower0, upper0, sample), 0.001, np.pi / 2, .35) + 0.5) ax0_0 = ax0.twinx() ax0_0.set_ylim(-0.2, 1.2) ax0_0.plot(x0, y0, color='red', zorder=1, alpha=0.5) # ax0_0.set_zorder(2) ax1 = fig.add_subplot(612) print('absolute frequency shift 0.005 Hz:', np.max(jars[1]) - np.min(jars[1])) ax1.plot(times[1], jars[1]) ax1.set_ylim(-12, 12) lower1 = 0 upper1 = 400 x1 = np.linspace(lower1, upper1, sample) y1 = (sin_response(np.linspace(lower1, upper1, sample), 0.005, np.pi / 2, .35) + 0.5) ax1_0 = ax1.twinx() ax1_0.set_ylim(-0.2, 1.2) ax1_0.plot(x1, y1, color='red', alpha=0.5) ax2 = fig.add_subplot(613) print('absolute frequency shift 0.01 Hz:', np.max(jars[2]) - np.min(jars[2])) ax2.plot(times[2], jars[2]) ax2.set_ylim(-12, 12) lower2 = 0 upper2 = 400 x2 = np.linspace(lower2, upper2, sample) y2 = (sin_response(np.linspace(lower2, upper2, sample), 0.01, np.pi / 2, 0.35) + 0.5) ax2_0 = ax2.twinx() ax2_0.set_ylim(-0.2, 1.2) ax2_0.plot(x2, y2, color='red', alpha=0.5) ax3 = fig.add_subplot(614) print('absolute frequency shift 0.02 Hz:', np.max(jars[3]) - np.min(jars[3])) ax3.plot(times[3], jars[3]) ax3.set_ylim(-12, 12) lower3 = 0 upper3 = 200 x3 = np.linspace(lower3, upper3, sample) y3 = (sin_response(np.linspace(lower3, upper3, sample), 0.05, np.pi / 2, 0.35) + 0.5) ax3_0 = ax3.twinx() ax3_0.set_ylim(-0.2, 1.2) ax3_0.plot(x3, y3, color='red', alpha=0.5) ax4 = fig.add_subplot(615) print('absolute frequency shift 0.5 Hz:', np.max(jars[4]) - np.min(jars[4])) ax4.plot(times[4], jars[4]) ax4.set_ylim(-12, 12) lower4 = 0 upper4 = 200 x4 = np.linspace(lower4, upper4, sample) y4 = (sin_response(np.linspace(lower4, upper4, sample), 0.2, np.pi / 2, 0.35) + 0.5) ax4_0 = ax4.twinx() ax4_0.set_ylim(-0.2, 1.2) ax4_0.plot(x4, y4, color='red', alpha=0.5) ax5 = fig.add_subplot(616) print('absolute frequency shift 1 Hz:', np.max(jars[5]) - np.min(jars[5])) ax5.plot(times[5], jars[5]) ax5.set_ylim(-12, 12) lower5 = 0 upper5 = 200 x5 = np.linspace(lower5, upper5, sample) y5 = (sin_response(np.linspace(lower5, upper5, sample), 1, np.pi / 2, 0.35) + 0.5) ax5_0 = ax5.twinx() ax5_0.plot(x5, y5, color='red', lw=0.5, alpha=0.5) ax5_0.set_ylim(-0.2, 1.2) plt.subplots_adjust(left=0.125, bottom=0.1, right=0.9, top=0.9, wspace=0.1, hspace=0.35) plt.show()