import matplotlib.pyplot as plt import numpy as np import pylab from IPython import embed from scipy.optimize import curve_fit from matplotlib.mlab import specgram import os from jar_functions import gain_curve_fit plt.rcParams.update({'font.size': 10}) identifier = ['2015eigen8', '2015eigen15', '2015eigen16', '2015eigen17', '2015eigen19' ] amfs = [] gains = [] maxgains = [] mingains = [] taus = [] f_cs = [] predicts = [] for ID in identifier: predict = [] print(ID) amf = np.load('eigen_amf_%s.npy' % ID) amfs.append(amf) gain = np.load('eigen_gain_%s.npy' % ID) gains.append(gain) print(np.max(gain)) sinv, sinc = curve_fit(gain_curve_fit, amf, gain, [2, 3]) # print('tau:', sinv[0]) taus.append(sinv[0]) f_cutoff = abs(1 / (2 * np.pi * sinv[0])) print('f_cutoff:', f_cutoff) f_cs.append(f_cutoff) print('min gain:', np.min(gain)) print('max gain:', np.max(gain)) maxgains.append(np.max(gain)) mingains.append(np.min(gain)) # predict of gain for f in amf: G = np.max(gain) / np.sqrt(1 + (2 * ((np.pi * f * sinv[0]) ** 2))) predict.append(G) predicts.append(predict) print('max of absolute max gain:', np.max(maxgains)) print('min of absolute max gain:', np.min(maxgains)) print('max of absolute min gain:', np.max(mingains)) print('min of absolute min gain:', np.min(mingains)) print('absolute max f_c:', np.max(f_cs)) print('absolute min f_c:', np.min(f_cs)) sort = sorted(zip(f_cs, identifier)) print(sort) # order of plotting: 2018lepto1, 2018lepto5, 2018lepto76, 2018lepto98, 2019lepto24, 2020lepto06 # order of f_c: 2019lepto24, 2020lepto06, 2018lepto98, 2018lepto76, 2018lepto1, 2018lepto5 fig = plt.figure(figsize=(8.27, 11.69)) # ax0 = plt.subplot2grid(shape=(3,4), loc=(0,0), colspan = 2) # ax1 = plt.subplot2grid((3,4), (0,2), colspan = 2) # ax2 = plt.subplot2grid((3,4), (1,0), colspan = 2) # ax3 = plt.subplot2grid((3,4), (1,2), colspan = 2) # ax4 = plt.subplot2grid((3,4), (2,0), colspan = 2) ax0 = fig.add_subplot(321) fig.text(0.05, 0.5, 'gain [Hz/(mV/cm)]', ha='center', va='center', rotation='vertical') fig.text(0.5, 0.04, 'envelope frequency [Hz]', ha='center', va='center') ax0.set_xlim(0.0007, 1.5) ax0.set_ylim(0.001, 10) ax0.plot(amfs[1], gains[1], 'o', label='gain') ax0.plot(amfs[1], predicts[1], label='fit') ax0.axvline(x=f_cs[1], ymin=0, ymax=5, ls='-', alpha=0.5, label='cutoff frequency') ax0.set_xscale('log') ax0.set_yscale('log') ax0.axes.xaxis.set_ticklabels([]) ax1 = fig.add_subplot(322) ax1.set_xlim(0.0007, 1.5) ax1.set_ylim(0.001, 10) ax1.plot(amfs[0], gains[0], 'o', label='gain') ax1.plot(amfs[0], predicts[0], label='fit') ax1.axvline(x=f_cs[0], ymin=0, ymax=5, ls='-', alpha=0.5, label='cutoff frequency') ax1.set_xscale('log') ax1.set_yscale('log') ax1.axes.yaxis.set_ticklabels([]) ax1.axes.xaxis.set_ticklabels([]) ax2 = fig.add_subplot(323) ax2.set_xlim(0.0007, 1.5) ax2.set_ylim(0.001, 10) ax2.plot(amfs[4], gains[4], 'o', label='gain') ax2.plot(amfs[4], predicts[4], label='fit') ax2.axvline(x=f_cs[4], ymin=0, ymax=5, ls='-', alpha=0.5, label='cutoff frequency') ax2.set_xscale('log') ax2.set_yscale('log') ax2.axes.xaxis.set_ticklabels([]) ax3 = fig.add_subplot(324) ax3.set_xlim(0.0007, 1.5) ax3.set_ylim(0.001, 10) ax3.plot(amfs[2], gains[2], 'o', label='gain') ax3.plot(amfs[2], predicts[2], label='fit') ax3.axvline(x=f_cs[2], ymin=0, ymax=5, ls='-', alpha=0.5, label='cutoff frequency') ax3.set_xscale('log') ax3.set_yscale('log') ax3.axes.yaxis.set_ticklabels([]) ax4 = fig.add_subplot(325) ax4.set_xlim(0.0007, 1.5) ax4.set_ylim(0.001, 10) ax4.plot(amfs[3], gains[3], 'o', label='gain') ax4.plot(amfs[3], predicts[3], label='fit') ax4.axvline(x=f_cs[3], ymin=0, ymax=5, ls='-', alpha=0.5, label='cutoff frequency') ax4.set_xscale('log') ax4.set_yscale('log') # plt.legend(loc = 'lower left') plt.show() # np.save('f_c', f_c) # np.save('tau', tau)