import matplotlib.pyplot as plt import numpy as np import pylab from IPython import embed from scipy.optimize import curve_fit from matplotlib.mlab import specgram import os from jar_functions import import_data from jar_functions import import_amfreq from jar_functions import sin_response plt.rcParams.update({'font.size': 20}) base_path = 'D:\\jar_project\\JAR\\sin' identifier = ['2018lepto98'] ''' specs = [] jars = [] sub_times = [] sub_lim0 = [] sub_lim1 = [] time = [] for ID in identifier: for dataset in os.listdir(os.path.join(base_path, ID)): if dataset == 'prerecordings': continue datapath = os.path.join(base_path, ID, dataset, '%s.nix' % dataset) print(datapath) amfreq = import_amfreq(datapath) if amfreq == '0.005' or amfreq == '0.02' or amfreq == '0.05': print(amfreq) data, pre_data, dt = import_data(datapath) #hstack concatenate: 'glue' pre_data and data if len(data) == 2: trace0 = np.hstack((pre_data[0], data[0])) trace1 = np.hstack((pre_data[1], data[1])) else: trace0 = np.hstack((pre_data, data)) # data nfft = 2**17 spec, freqs, times = specgram(trace0, Fs=1 / dt, detrend='mean', NFFT=nfft, noverlap=nfft * 0.95) dbspec = 10.0 * np.log10(spec) # in dB power = dbspec[:, 25] fish_p = power[(freqs > 200) & (freqs < 1000)] fish_f = freqs[(freqs > 200) & (freqs < 1000)] index = np.argmax(fish_p) eodf = fish_f[index] eodf4 = eodf * 4 lim0 = eodf4 - 10 lim1 = eodf4 + 25 df = freqs[1] - freqs[0] ix0 = int(np.floor(lim0/df)) # back to index ix1 = int(np.ceil(lim1/df)) # back to index spec4= dbspec[ix0:ix1, :] freq4 = freqs[ix0:ix1] jar4 = freq4[np.argmax(spec4, axis=0)] # all freqs at max specs over axis 0 cut_time_jar = times[:len(jar4)] specs.append(spec4) jars.append(jar4) sub_times.append(cut_time_jar) sub_lim0.append(lim0) sub_lim1.append(lim1) time.append(times) np.save('spec0.npy', specs[0]) np.save('spec1.npy', specs[1]) np.save('spec2.npy', specs[2]) np.save('jar0.npy', jars[0]) np.save('jar1.npy', jars[1]) np.save('jar2.npy', jars[2]) np.save('sub_times0.npy', sub_times[0]) np.save('sub_times1.npy', sub_times[1]) np.save('sub_times2.npy', sub_times[2]) np.save('sub_lim0_0.npy', sub_lim0[0]) np.save('sub_lim0_1.npy', sub_lim0[1]) np.save('sub_lim0_2.npy', sub_lim0[2]) np.save('sub_lim1_0.npy', sub_lim1[0]) np.save('sub_lim1_1.npy', sub_lim1[1]) np.save('sub_lim1_2.npy', sub_lim1[2]) np.save('time0.npy', time[0]) np.save('time1.npy', time[1]) np.save('time2.npy', time[2]) ''' spec0 = np.load('spec0.npy') spec1 = np.load('spec1.npy') spec2 = np.load('spec2.npy') jar0 = np.load('jar0.npy') jar1 = np.load('jar1.npy') jar2 = np.load('jar2.npy') sub_times0 = np.load('sub_times0.npy') sub_times1 = np.load('sub_times1.npy') sub_times2 = np.load('sub_times2.npy') sub_lim0_0 = np.load('sub_lim0_0.npy') sub_lim0_1 = np.load('sub_lim0_1.npy') sub_lim0_2 = np.load('sub_lim0_2.npy') sub_lim1_0 = np.load('sub_lim1_0.npy') sub_lim1_1 = np.load('sub_lim1_1.npy') sub_lim1_2 = np.load('sub_lim1_2.npy') time0 = np.load('time0.npy') time1 = np.load('time1.npy') time2 = np.load('time2.npy') fig = plt.figure(figsize = (20,20)) ax0 = fig.add_subplot(232) ax0.tick_params(width = 2, length = 5) ax0.imshow(spec0, cmap='jet', origin='lower', extent=(time0[0], time0[-1], sub_lim0_0, sub_lim1_0), aspect='auto', vmin=-80, vmax=-10) #ax0.plot(sub_times0, jar0, 'k', label = 'peak detection trace', lw = 2) ax0.set_xlim(time0[0],time0[-1]) ax0.axes.xaxis.set_ticklabels([]) ax0.axes.yaxis.set_ticklabels([]) ax1 = fig.add_subplot(231) ax1.tick_params(width = 2, length = 5) ax1.imshow(spec1, cmap='jet', origin='lower', extent=(time1[0], time1[-1], sub_lim0_1, sub_lim1_1), aspect='auto', vmin=-80, vmax=-10) #ax1.plot(sub_times1, jar1, 'k', label = 'peak detection trace', lw = 2) ax1.set_xlim(time1[0],time1[-1]) ax1.set_ylabel('frequency [Hz]') ax1.axes.xaxis.set_ticklabels([]) plt.text(-0.1, 1.05, "A)", fontweight=550, transform=ax1.transAxes) ax2 = fig.add_subplot(233) ax2.tick_params(width = 2, length = 5) ax2.imshow(spec2, cmap='jet', origin='lower', extent=(time2[0], time2[-1], sub_lim0_2, sub_lim1_2), aspect='auto', vmin=-80, vmax=-10) #ax2.plot(sub_times2, jar2, 'k', label = 'peak detection trace', lw = 2) ax2.set_xlim(time2[0],time2[-1]) ax2.axes.xaxis.set_ticklabels([]) ax2.axes.yaxis.set_ticklabels([]) # AM model: 0.05 Hz lower0 = 50 upper0 = 250 sample0 = 2000 x0 = np.linspace(lower0, upper0, sample0) y0_0 = (sin_response(np.linspace(lower0, upper0, sample0), 0.05, np.pi/2, -0.35) - 0.5) y0_1 = (sin_response(np.linspace(lower0, upper0, sample0), 0.05, np.pi/2, 0.35) + 0.5) ax3 = fig.add_subplot(234) ax3.tick_params(width = 2, length = 5) plt.hlines(y = 0, xmin = 0, xmax = 50, color = 'red') plt.vlines(x = 50, ymin = -0.15, ymax = 0.15, color = 'red') ax3.plot(x0, y0_0, c = 'red') ax3.plot(x0, y0_1, c = 'red') ax3.fill_between(x0, y0_0, y0_1) ax3.set_ylabel('amplitude [mV/cm]') ax3.set_xlabel('time [s]') ax3.set_xlim(0,250) plt.text(-0.1, 1.05, "B)", fontweight=550, transform=ax3.transAxes) # AM model: 0.02 Hz lower1 = 50 upper1 = 250 sample1 = 2000 x1 = np.linspace(lower1, upper1, sample1) y1_0 = (sin_response(np.linspace(lower1, upper1, sample1), 0.02, -np.pi/2 , -0.35) - 0.5) y1_1 = (sin_response(np.linspace(lower1, upper1, sample1), 0.02, -np.pi/2, 0.35) + 0.5) ax4 = fig.add_subplot(235) ax4.tick_params(width = 2, length = 5) plt.hlines(y = 0, xmin = 0, xmax = 50, color = 'red') plt.vlines(x = 50, ymin = -0.15, ymax = 0.15, color = 'red') ax4.plot(x1, y1_0, c = 'red') ax4.plot(x1, y1_1, c = 'red') ax4.fill_between(x1, y1_0, y1_1) ax4.set_xlabel('time [s]') ax4.set_xlim(0,250) ax4.axes.yaxis.set_ticklabels([]) # AM model: 0.005 Hz lower2 = 50 upper2 = 450 sample2 = 2000 x2 = np.linspace(lower2, upper2, sample2) y2_0 = (sin_response(np.linspace(lower2, upper2, sample2), 0.005, -np.pi , -0.35) - 0.5) y2_1 = (sin_response(np.linspace(lower2, upper2, sample2), 0.005, -np.pi, 0.35) + 0.5) ax5 = fig.add_subplot(236) ax5.tick_params(width = 2, length = 5) plt.hlines(y = 0, xmin = 0, xmax = 50, color = 'red') plt.vlines(x = 50, ymin = -0.15, ymax = 0.15, color = 'red') ax5.plot(x2, y2_0, c = 'red') ax5.plot(x2, y2_1, c = 'red') ax5.fill_between(x2, y2_0, y2_1) ax5.set_xlabel('time [s]') ax5.set_xlim(0,450) ax5.axes.yaxis.set_ticklabels([]) plt.show() embed()