From f80f6b7583421a90edf94be549a8e695c4043707 Mon Sep 17 00:00:00 2001 From: xaver Date: Wed, 8 Jul 2020 13:36:26 +0200 Subject: [PATCH] 08.07 analysis step_stimulus not perfect, but works --- jar_functions.py | 9 +++++- second_try.py | 73 +++++++++++++++++++++++++----------------------- 2 files changed, 46 insertions(+), 36 deletions(-) diff --git a/jar_functions.py b/jar_functions.py index a809ae0..0c73330 100644 --- a/jar_functions.py +++ b/jar_functions.py @@ -73,7 +73,7 @@ def parse_infodataset(dataset_name): identifier.append((l.split(':')[-1].strip()[1:12])) return identifier -def mean_loops(start, stop, timespan, frequencies, time): +def mean_traces(start, stop, timespan, frequencies, time): minimumt = min(len(time[0]), len(time[1])) # new time with wished timespan because it varies for different loops tnew = np.arange(start, stop, timespan / minimumt) # 3rd input is stepspacing: @@ -139,6 +139,13 @@ def JAR_eod(frequencies, time, offset_point): return jar_eod +def sort_values(values): + a = values[:2] + tau = np.array(sorted(values[2:], reverse=False)) + values = np.array([a, tau]) + values_flat = values.flatten() + return values_flat + diff --git a/second_try.py b/second_try.py index cc5b94f..aaad48a 100644 --- a/second_try.py +++ b/second_try.py @@ -7,10 +7,11 @@ from IPython import embed from scipy.optimize import curve_fit from jar_functions import parse_dataset from jar_functions import parse_infodataset -from jar_functions import mean_loops +from jar_functions import mean_traces from jar_functions import mean_noise_cut from jar_functions import norm_function from jar_functions import step_response +from jar_functions import sort_values #nicht: 19-aa, 22-ae, 22-ad (?) datasets = [#(os.path.join('D:\\jar_project\\JAR\\2020-06-19-aa\\beats-eod.dat')), #-5Hz delta f, horrible fit @@ -31,9 +32,6 @@ infodatasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\info.dat')), time_all = [] freq_all = [] -constant_factors = [] -time_constants = [] - ID = [] for infodataset in infodatasets: @@ -48,9 +46,9 @@ for dataset in datasets: dm = np.mean(duration) pm = np.mean(pause) timespan = dm + pm - start = -10 - stop = 200 - mf , tnew = mean_loops(start, stop, timespan, frequency, time) + start = (time[0][0] + time[1][0]) / 2 + stop = (time[0][-1] + time[1][-1]) / 2 + mf , tnew = mean_traces(start, stop, timespan, frequency, time) # maybe fixed timespan/sampling rate #for i in range(len(mf)): @@ -64,34 +62,40 @@ for dataset in datasets: freq_all.append(norm.tolist()) time_all.append(ct_arr) - plt.plot(ct_arr, norm) #, label='fish=%s' % ID) + plt.plot(ct_arr, norm, color = 'grey', label='fish=%s' % ID) + + # fit function + sv, sc = curve_fit(step_response, ct_arr[ct_arr < dm], norm[ct_arr < dm]) #step_values and step_cov + + # sorted a and tau + values = sort_values(sv) + + ''' + plt.plot(ct_arr[ct_arr < 100], step_response(ct_arr, *sv)[ct_arr < 100], color='orange', + label='fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(values)) + ''' + + print('fish: a1, a2, tau1, tau2', values) - sv, sc = curve_fit(step_response, ct_arr[ct_arr < dm], norm[ct_arr < dm], maxfev = 2000) #step_values and step_cov +# average over all fish +mf_all , tnew_all = mean_traces(start, stop, timespan, freq_all, time_all) - a = sv[:2] - tau = np.array(sorted(sv[2:], reverse=False)) - values = np.array([a, tau]) - values_flat = values.flatten() +plt.plot(tnew_all, mf_all, color = 'b', label = 'average', ls = 'dashed') - plt.plot(ct_arr [ct_arr < 100], step_response(ct_arr, *sv)[ct_arr < 100], label='fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(values_flat)) +# fit for average +sv_all, sc_all = curve_fit(step_response, tnew_all[tnew_all < dm], mf_all[tnew_all < dm]) #step_values and step_cov - print('a1, a2, tau1, tau2', values_flat) - constant_factors.append(a) - time_constants.append(tau) -fr = [] -for j in freq_all: - fr.append(freq_all[j]) - embed() - minimumf_all = min(len(freq_all[j])) - f_all = freq_all[j][:minimumf_all] - print(freq_all[0]) -print(len((freq_all[j]))) +values_all = sort_values(sv_all) -#f_all_arr = np.array([f0_all], [f1_all]) -#f_mean_all = np.mean(freq_all, axis = 0) -#t_mean_all = np.mean(time_all, axis = 0) +plt.plot(tnew_all[tnew_all < 100], step_response(tnew_all, *sv_all)[tnew_all < 100], color='orange', + label='average_fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(values_all)) + +print('average: a1, a2, tau1, tau2', values_all) + +const_line = plt.axhline(y = 0.632) +stimulus_duration = plt.hlines(y = -0.25, xmin = 0, xmax = 100, color = 'r', label = 'stimulus_duration') +base_line = plt.axhline(y = 0, color = 'black', ls = 'dotted', linewidth = '1') -const_line = plt.axhline(y=0.632) plt.xlim([-10,220]) plt.xlabel('time [s]') plt.ylabel('rel. JAR magnitude') @@ -101,9 +105,8 @@ plt.legend(loc = 'lower right') plt.show() embed() - -# alle daten einlesen durch große for schleife (auch average über alle fische?) -# für einzelne fische fit kontrollieren - -# Fragen: wie offset point wenn nicht start bei 0 sec? über zeitdatenpunkt? -# wie zip ich ID liste mit plot (für eine for schleife) zusammen? \ No newline at end of file +# Fragen: +# wie offset point wenn nicht start bei 0 sec? über zeitdatenpunkt? oder einfach immer bei 0 onset..? +# wie zip ich ID liste mit plot (für eine for schleife) zusammen? +# welche Stimulusintesität? +# start/stop/timespan ok? \ No newline at end of file