06.07
This commit is contained in:
parent
4022fff994
commit
e91b648b5c
@ -12,6 +12,7 @@ def parse_dataset(dataset_name):
|
|||||||
eodfs = []
|
eodfs = []
|
||||||
deltafs = []
|
deltafs = []
|
||||||
stimulusfs = []
|
stimulusfs = []
|
||||||
|
duration = []
|
||||||
|
|
||||||
# data itself
|
# data itself
|
||||||
times = []
|
times = []
|
||||||
@ -31,6 +32,8 @@ def parse_dataset(dataset_name):
|
|||||||
deltafs.append(float(l.split(':')[-1].strip()[:-2])) #from that all expect the last two signs (Hz unit)
|
deltafs.append(float(l.split(':')[-1].strip()[:-2])) #from that all expect the last two signs (Hz unit)
|
||||||
if "#" in l and "StimulusFrequency" in l: #this for different metadata in different lists
|
if "#" in l and "StimulusFrequency" in l: #this for different metadata in different lists
|
||||||
stimulusfs.append(float(l.split(':')[-1].strip()[:-2]))
|
stimulusfs.append(float(l.split(':')[-1].strip()[:-2]))
|
||||||
|
if "#" in l and "Duration" in l:
|
||||||
|
duration.append(float(l.split(':')[-1].strip()[:-3]))
|
||||||
|
|
||||||
if '#Key' in l:
|
if '#Key' in l:
|
||||||
if len(time) != 0: #therefore empty in the first round
|
if len(time) != 0: #therefore empty in the first round
|
||||||
@ -52,12 +55,42 @@ def parse_dataset(dataset_name):
|
|||||||
amplitudes.append(ampl) #these append the data from the first loop to the final lists, because we overwrite them (?)
|
amplitudes.append(ampl) #these append the data from the first loop to the final lists, because we overwrite them (?)
|
||||||
frequencies.append(freq)
|
frequencies.append(freq)
|
||||||
|
|
||||||
return times, frequencies, amplitudes, eodfs, deltafs, stimulusfs #output of the function
|
return frequencies, times, amplitudes, eodfs, deltafs, stimulusfs, duration #output of the function
|
||||||
|
|
||||||
|
def parse_infodataset(dataset_name):
|
||||||
|
assert(os.path.exists(dataset_name)) #see if data exists
|
||||||
|
f = open(dataset_name, 'r') #open data we gave in
|
||||||
|
lines = f.readlines() #read data
|
||||||
|
f.close() #?
|
||||||
|
|
||||||
|
identifier = []
|
||||||
|
for i in range(len(lines)):
|
||||||
|
l = lines[i].strip() #all lines of textdata, exclude all empty lines (empty () default for spacebar)
|
||||||
|
if "#" in l and "Identifier" in l:
|
||||||
|
identifier.append((l.split(':')[-1].strip()[1:12]))
|
||||||
|
return identifier
|
||||||
|
|
||||||
|
def mean_loops(start, stop, timespan, frequencies, time):
|
||||||
|
minimumt = min(len(time[0]), len(time[1]))
|
||||||
|
# new time with wished timespan because it varies for different loops
|
||||||
|
tnew = np.arange(start, stop, timespan / minimumt) # 3rd input is stepspacing:
|
||||||
|
# in case complete measuring time devided by total number of datapoints
|
||||||
|
# interpolation
|
||||||
|
f0 = np.interp(tnew, time[0], frequencies[0])
|
||||||
|
f1 = np.interp(tnew, time[1], frequencies[1])
|
||||||
|
|
||||||
|
#new array with frequencies of both loops as two lists put together
|
||||||
|
frequency = np.array([f0, f1])
|
||||||
|
|
||||||
|
#making a mean over both loops with the axis 0 (=averaged in y direction, axis=1 would be over x axis)
|
||||||
|
mf = np.mean(frequency, axis=0)
|
||||||
|
|
||||||
|
return mf, tnew
|
||||||
|
|
||||||
def mean_noise_cut(frequencies, time, n):
|
def mean_noise_cut(frequencies, time, n):
|
||||||
cutf = []
|
cutf = []
|
||||||
cutt = []
|
cutt = []
|
||||||
|
|
||||||
for k in np.arange(0, len(frequencies), n):
|
for k in np.arange(0, len(frequencies), n):
|
||||||
t = time[k]
|
t = time[k]
|
||||||
f = np.mean(frequencies[k:k+n])
|
f = np.mean(frequencies[k:k+n])
|
||||||
@ -72,6 +105,18 @@ def step_response(t, a1, a2, tau1, tau2):
|
|||||||
r_step[t<0] = 0
|
r_step[t<0] = 0
|
||||||
return r_step
|
return r_step
|
||||||
|
|
||||||
|
def norm_function(cf_arr, ct_arr, onset_point, offset_point):
|
||||||
|
onset_end = onset_point - 10
|
||||||
|
offset_start = offset_point - 10
|
||||||
|
|
||||||
|
base = np.mean(cf_arr[(ct_arr >= onset_end) & (ct_arr < onset_point)])
|
||||||
|
|
||||||
|
ground = cf_arr - base
|
||||||
|
|
||||||
|
jar = np.mean(ground[(ct_arr >= offset_start) & (ct_arr < offset_point)])
|
||||||
|
|
||||||
|
norm = ground / jar
|
||||||
|
return norm
|
||||||
|
|
||||||
def base_eod(frequencies, time, onset_point):
|
def base_eod(frequencies, time, onset_point):
|
||||||
base_eod = []
|
base_eod = []
|
||||||
@ -94,32 +139,6 @@ def JAR_eod(frequencies, time, offset_point):
|
|||||||
return jar_eod
|
return jar_eod
|
||||||
|
|
||||||
|
|
||||||
def mean_loops(start, stop, timespan, frequencies, time):
|
|
||||||
minimumt = min(len(time[0]), len(time[1]))
|
|
||||||
# new time with wished timespan because it varies for different loops
|
|
||||||
tnew = np.arange(start, stop, timespan / minimumt) # 3rd input is stepspacing:
|
|
||||||
# in case complete measuring time devided by total number of datapoints
|
|
||||||
# interpolation
|
|
||||||
f0 = np.interp(tnew, time[0], frequencies[0])
|
|
||||||
f1 = np.interp(tnew, time[1], frequencies[1])
|
|
||||||
|
|
||||||
#new array with frequencies of both loops as two lists put together
|
|
||||||
frequency = np.array([f0, f1])
|
|
||||||
|
|
||||||
#making a mean over both loops with the axis 0 (=averaged in y direction, axis=1 would be over x axis)
|
|
||||||
mf = np.mean(frequency, axis=0)
|
|
||||||
return mf, tnew
|
|
||||||
|
|
||||||
|
|
||||||
def norm_function(cf_arr, ct_arr, onset_point, offset_point):
|
|
||||||
onset_end = onset_point - 10
|
|
||||||
offset_start = offset_point - 10
|
|
||||||
|
|
||||||
base = np.mean(cf_arr[(ct_arr >= onset_end) & (ct_arr < onset_point)])
|
|
||||||
|
|
||||||
ground = cf_arr - base
|
|
||||||
|
|
||||||
jar = np.mean(cf_arr[(ct_arr >= offset_start) & (ct_arr < offset_point)])
|
|
||||||
|
|
||||||
norm = ground / jar
|
|
||||||
return norm
|
|
@ -6,70 +6,74 @@ import numpy as np
|
|||||||
from IPython import embed
|
from IPython import embed
|
||||||
from scipy.optimize import curve_fit
|
from scipy.optimize import curve_fit
|
||||||
from jar_functions import parse_dataset
|
from jar_functions import parse_dataset
|
||||||
from jar_functions import mean_noise_cut
|
from jar_functions import parse_infodataset
|
||||||
from jar_functions import step_response
|
|
||||||
from jar_functions import JAR_eod
|
|
||||||
from jar_functions import base_eod
|
|
||||||
from jar_functions import mean_loops
|
from jar_functions import mean_loops
|
||||||
|
from jar_functions import mean_noise_cut
|
||||||
from jar_functions import norm_function
|
from jar_functions import norm_function
|
||||||
|
from jar_functions import step_response
|
||||||
|
|
||||||
|
datasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ab\\beats-eod.dat')),
|
||||||
|
(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))]
|
||||||
|
infodatasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\info.dat'))]
|
||||||
|
|
||||||
datasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))]
|
|
||||||
|
|
||||||
eodf = []
|
|
||||||
deltaf = []
|
|
||||||
stimulusf = []
|
|
||||||
|
|
||||||
time = []
|
time = []
|
||||||
frequency_mean = []
|
frequency_mean = []
|
||||||
amplitude = []
|
|
||||||
|
constant_factors = []
|
||||||
|
time_constants = []
|
||||||
|
|
||||||
start = -10
|
start = -10
|
||||||
stop = 200
|
stop = 200
|
||||||
timespan = 210
|
timespan = 210
|
||||||
|
for infodataset in infodatasets:
|
||||||
|
i= parse_infodataset(infodataset)
|
||||||
|
identifier = i[0]
|
||||||
|
|
||||||
for dataset in datasets:
|
for dataset in datasets:
|
||||||
#input of the function
|
#input of the function
|
||||||
t, f, a, e, d, s = parse_dataset(dataset)
|
frequency, time, amplitude, eodf, deltaf, stimulusf, duration = parse_dataset(dataset)
|
||||||
mf , tnew = mean_loops(start, stop, timespan, f, t)
|
mf , tnew = mean_loops(start, stop, timespan, frequency, time)
|
||||||
embed()
|
dm = np.mean(duration)
|
||||||
|
frequency_mean.append(mf)
|
||||||
|
time.append(tnew)
|
||||||
|
|
||||||
for i in range(len(mf)):
|
for i in range(len(frequency_mean)):
|
||||||
for n in [500, 1000, 1500]:
|
cf, ct = mean_noise_cut(frequency_mean[i], time[i], n=1000)
|
||||||
cf, ct = mean_noise_cut(mf[i], time[i], n=n)
|
|
||||||
|
|
||||||
cf_arr = np.array(cf)
|
cf_arr = np.array(cf)
|
||||||
ct_arr = np.array(ct)
|
ct_arr = np.array(ct)
|
||||||
|
|
||||||
norm = norm_function(cf_arr, ct_arr, onset_point = 0, offset_point = 100)
|
norm = norm_function(cf_arr, ct_arr, onset_point = dm - dm, offset_point = dm) #dm-dm funktioniert nur wenn onset = 0 sec
|
||||||
|
|
||||||
plt.plot(ct_arr, norm, label='n=%d' % n)
|
plt.plot(ct_arr, norm) #, label='n=%d' % n)
|
||||||
|
|
||||||
#r_step = step_response(t=ct_arr, a1=0.58, a2=0.47, tau1=11.7, tau2=60)
|
sv, sc = curve_fit(step_response, ct_arr[ct_arr < 100], norm[ct_arr < 100]) #step_values and step_cov
|
||||||
|
a = sv[:2]
|
||||||
|
tau = np.array(sorted(sv[2:], reverse=False))
|
||||||
|
values = np.array([a, tau])
|
||||||
|
values_flat = values.flatten()
|
||||||
|
|
||||||
#plt.plot(ct_arr[ct_arr < 100], r_step[ct_arr < 100], label='fit: n=%d' % n)
|
plt.plot(ct_arr [ct_arr < 100], step_response(ct_arr, *sv)[ct_arr < 100], 'r-', label='fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(values_flat))
|
||||||
|
|
||||||
step_values, step_cov = curve_fit(step_response, ct_arr[ct_arr < 100], norm [ct_arr < 100])
|
print('a1, a2, tau1, tau2', values_flat)
|
||||||
|
constant_factors.append(a)
|
||||||
|
time_constants.append(tau)
|
||||||
|
|
||||||
plt.plot(ct_arr [ct_arr < 100], step_response(ct_arr, *step_values)[ct_arr < 100], 'r-', label='fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(step_values))
|
|
||||||
print(step_values)
|
|
||||||
const_line = plt.axhline(y=0.632)
|
const_line = plt.axhline(y=0.632)
|
||||||
|
|
||||||
'plotting'
|
|
||||||
plt.xlim([-10,220])
|
plt.xlim([-10,220])
|
||||||
#plt.ylim([400, 1000])
|
|
||||||
plt.xlabel('time [s]')
|
plt.xlabel('time [s]')
|
||||||
plt.ylabel('rel. JAR magnitude')
|
plt.ylabel('rel. JAR magnitude')
|
||||||
#plt.title('fit_function(a1=0)')
|
plt.title('relative JAR')
|
||||||
#plt.savefig('fit_function(a1=0)')
|
plt.savefig('relative JAR')
|
||||||
plt.legend(loc = 'lower right')
|
plt.legend(loc = 'lower right')
|
||||||
plt.show()
|
plt.show()
|
||||||
embed()
|
embed()
|
||||||
|
|
||||||
# noch mehr in funktionen reinhauen (quasi nur noch plotting und funktionen einlesen)
|
|
||||||
# zeitkonstanten nach groß und klein sortieren
|
|
||||||
# onset dauer auslesen
|
|
||||||
# ID aus info.dat auslesen
|
|
||||||
# alle daten einlesen durch große for schleife (auch average über alle fische?)
|
# alle daten einlesen durch große for schleife (auch average über alle fische?)
|
||||||
# für einzelne fische fit kontrollieren
|
# für einzelne fische fit kontrollieren
|
||||||
|
|
||||||
|
#Fragen: wie offset point wenn nicht start bei 0 sec?
|
||||||
|
#wie a1, tau1,.. ohne array? (funkt wegen dimensionen wenn ichs nochmal in liste appende)
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user