This commit is contained in:
xaver 2020-06-30 18:30:41 +02:00
parent 77534d6e4a
commit d4ed1e0040
3 changed files with 38 additions and 33 deletions

View File

@ -33,7 +33,6 @@ def parse_dataset(dataset_name):
stimulusfs.append(float(l.split(':')[-1].strip()[:-2])) stimulusfs.append(float(l.split(':')[-1].strip()[:-2]))
if '#Key' in l: if '#Key' in l:
#print('KEY')
if len(time) != 0: #therefore empty in the first round if len(time) != 0: #therefore empty in the first round
times.append(time) #2nd loop means time != 0, so we put the times/amplitudes/frequencies to times.append(time) #2nd loop means time != 0, so we put the times/amplitudes/frequencies to
amplitudes.append(ampl) #the data of the first loop amplitudes.append(ampl) #the data of the first loop
@ -42,7 +41,6 @@ def parse_dataset(dataset_name):
time = [] #temporary lists to overwrite the lists with the same name we made before time = [] #temporary lists to overwrite the lists with the same name we made before
ampl = [] #so they are empty again ampl = [] #so they are empty again
freq = [] freq = []
print(len(times))
if len(l) > 0 and l[0] is not '#': #line not empty and doesnt start with # if len(l) > 0 and l[0] is not '#': #line not empty and doesnt start with #
temporary = list(map(float, l.split())) #temporary list where we got 3 index splitted by spacebar, map to find them temporary = list(map(float, l.split())) #temporary list where we got 3 index splitted by spacebar, map to find them
@ -58,7 +56,7 @@ def parse_dataset(dataset_name):
def noise_reduce(dataset_name, n): '''
assert (os.path.exists(dataset_name)) # see if data exists assert (os.path.exists(dataset_name)) # see if data exists
f = open(dataset_name, 'r') # open data we gave in f = open(dataset_name, 'r') # open data we gave in
lines = f.readlines() # read data lines = f.readlines() # read data
@ -74,10 +72,15 @@ def noise_reduce(dataset_name, n):
if len(l) > 0 and l[0] is not '#': if len(l) > 0 and l[0] is not '#':
temporary = list(map(float, l.split())) temporary = list(map(float, l.split()))
frequencies.append(temporary[1]) frequencies.append(temporary[1])
'''
for k in np.arange(0, len(frequencies), n): # sollte nach k+n weitergehen? def mean_noise_cut(frequencies, time, n):
cutf = []
cutt = []
for k in np.arange(0, len(time), n):
f = frequencies[k:k+n] f = frequencies[k:k+n]
t = time[k]
mean = np.mean(f) mean = np.mean(f)
cutf.append(mean) cutf.append(mean)
cutt.append(t)
return cutf return cutf, cutt

View File

@ -1,7 +1,7 @@
import os import os
import numpy as np import numpy as np
from IPython import embed from IPython import embed
from jar_functions import noise_reduce from jar_functions import mean_noise_cut
datasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))] datasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))]

View File

@ -5,7 +5,7 @@ import IPython
import numpy as np import numpy as np
from IPython import embed from IPython import embed
from jar_functions import parse_dataset from jar_functions import parse_dataset
from jar_functions import noise_reduce from jar_functions import mean_noise_cut
datasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))] datasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))]
@ -26,7 +26,6 @@ timespan = 210
for dataset in datasets: for dataset in datasets:
#input of the function #input of the function
t, f, a, e, d, s= parse_dataset(dataset) t, f, a, e, d, s= parse_dataset(dataset)
cf = noise_reduce(dataset, n = 10)
'times' 'times'
# same for time in both loops # same for time in both loops
@ -46,20 +45,15 @@ for dataset in datasets:
# interpolation # interpolation
f0new = np.interp(tnew, t0, f0) f0new = np.interp(tnew, t0, f0)
f1 = f[1][:minimumf] f1 = f[1] #[:minimumf]
# interpolation # interpolation
f1new = np.interp(tnew, t1, f1) f1new = np.interp(tnew, t1, f1)
#new array with frequencies of both loops as two lists put together #new array with frequencies of both loops as two lists put together
frequency = np.array([[f0new], [f1new]]) frequency = np.array([f0new, f1new])
#making a mean over both loops with the axis 0 (=averaged in y direction, axis=1 would be over x axis)
mf = np.mean(frequency, axis=0).T #.T as transition (1,0) -> (0,1)
#other variant for transition by reshaping in needed dimension
mfreshape = np.reshape(mf, (minimumf, 1)) #as ploting is using the first dimension, number of datapoints has to be in the first
treshape = np.reshape(tnew, (minimumf, 1))
#making a mean over both loops with the axis 0 (=averaged in y direction, axis=1 would be over x axis)
mf = np.mean(frequency, axis=0) #.T as transition (1,0) -> (0,1)
#appending data #appending data
eodf.append(e) eodf.append(e)
@ -70,31 +64,39 @@ for dataset in datasets:
frequency_mean.append(mf) frequency_mean.append(mf)
time.append(tnew) time.append(tnew)
for i in range(len(frequency_mean)):
for n in [10, 50, 100, 1000, 10000, 20000, 30000]:
cf, ct = mean_noise_cut(frequency_mean[i], time[i], n=n)
plt.plot(ct, cf, label='n=%d' % n)
'''
'controll of interpolation'
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(tnew, mf, c = 'r', marker = 'o', ls = 'solid', label = 'new')
ax.plot(t0, f0, c = 'b', marker = '+', ls = '-', label = 'loop_0')
ax.plot(t1, f1, c= 'g', marker = '+', ls = '-', label = 'loop_1')
plt.legend(loc = 'best')
#plt.plot(tnew, mf, marker = 'r-o', label = new, t0, f0, marker = 'b-+', label = loop_0, t1, f1, marker = 'g-+', label = loop_1)
plt.show()
'''
'plotting' 'plotting'
'''why does append put in a 3rd dimension? plt.plot(time, frequency_mean) '''
plt.plot(tnew, mf)
plt.xlim([-10,200]) plt.xlim([-10,200])
#plt.ylim([400, 1000]) #plt.ylim([400, 1000])
plt.xlabel('time [s]') plt.xlabel('time [s]')
plt.ylabel('frequency [Hz]') plt.ylabel('frequency [Hz]')
#plt.title('noise_cut_n=100')
#plt.savefig('noise_cut_n=100')
plt.legend()
plt.show() plt.show()
def double_exp(t, a1, a2, tau1, tau2):
return a1*np.exp(-t/tau1)
# plotten mit manual values for a1, ...
# auch mal a1 oder a2 auf Null setzen.
#evtl. normiert darstellen (frequency / baseline frequency?)? #evtl. normiert darstellen (frequency / baseline frequency?)?
#Zeitkonstante: von sec. 0 bis 63%? relative JAR #Zeitkonstante: von sec. 0 bis 63%? relative JAR
'''
'controll of interpolation'
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(tnew, mf, c = 'r', marker = 'o', ls = 'solid', label = 'new')
ax.plot(t0, f0, c = 'b', marker = '+', ls = '-', label = 'loop_0')
ax.plot(t1, f1, c= 'g', marker = '+', ls = '-', label = 'loop_1')
plt.legend(loc = 'best')
#plt.plot(tnew, mf, marker = 'r-o', label = new, t0, f0, marker = 'b-+', label = loop_0, t1, f1, marker = 'g-+', label = loop_1)
plt.show()
'''