09.07
This commit is contained in:
parent
275b4bc473
commit
cf22967f48
@ -2,6 +2,15 @@ import os #compability with windows
|
|||||||
from IPython import embed
|
from IPython import embed
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
def step_response(t, a1, a2, tau1, tau2):
|
||||||
|
r_step = (a1*(1 - np.exp(-t/tau1))) + (a2*(1 - np.exp(-t/tau2)))
|
||||||
|
r_step[t<0] = 0
|
||||||
|
return r_step
|
||||||
|
|
||||||
|
def sin_response(t, f, p, A):
|
||||||
|
r_sin = A*sin(2*np.pi*t*f + p)
|
||||||
|
return r_sin
|
||||||
|
|
||||||
def parse_dataset(dataset_name):
|
def parse_dataset(dataset_name):
|
||||||
assert(os.path.exists(dataset_name)) #see if data exists
|
assert(os.path.exists(dataset_name)) #see if data exists
|
||||||
f = open(dataset_name, 'r') #open data we gave in
|
f = open(dataset_name, 'r') #open data we gave in
|
||||||
@ -100,12 +109,6 @@ def mean_noise_cut(frequencies, time, n):
|
|||||||
cutt.append(t)
|
cutt.append(t)
|
||||||
return cutf, cutt
|
return cutf, cutt
|
||||||
|
|
||||||
|
|
||||||
def step_response(t, a1, a2, tau1, tau2):
|
|
||||||
r_step = (a1*(1 - np.exp(-t/tau1))) + (a2*(1 - np.exp(-t/tau2)))
|
|
||||||
r_step[t<0] = 0
|
|
||||||
return r_step
|
|
||||||
|
|
||||||
def norm_function(cf_arr, ct_arr, onset_point, offset_point):
|
def norm_function(cf_arr, ct_arr, onset_point, offset_point):
|
||||||
onset_end = onset_point - 10
|
onset_end = onset_point - 10
|
||||||
offset_start = offset_point - 10
|
offset_start = offset_point - 10
|
||||||
|
112
second_try.py
112
second_try.py
@ -1,112 +0,0 @@
|
|||||||
import matplotlib.pyplot as plt
|
|
||||||
import os
|
|
||||||
import glob
|
|
||||||
import IPython
|
|
||||||
import numpy as np
|
|
||||||
from IPython import embed
|
|
||||||
from scipy.optimize import curve_fit
|
|
||||||
from jar_functions import parse_dataset
|
|
||||||
from jar_functions import parse_infodataset
|
|
||||||
from jar_functions import mean_traces
|
|
||||||
from jar_functions import mean_noise_cut
|
|
||||||
from jar_functions import norm_function
|
|
||||||
from jar_functions import step_response
|
|
||||||
from jar_functions import sort_values
|
|
||||||
|
|
||||||
#nicht: 19-aa, 22-ae, 22-ad (?)
|
|
||||||
datasets = [#(os.path.join('D:\\jar_project\\JAR\\2020-06-19-aa\\beats-eod.dat')), #-5Hz delta f, horrible fit
|
|
||||||
#(os.path.join('D:\\jar_project\\JAR\\2020-06-19-ab\\beats-eod.dat')), #-5Hz delta f, bad fit
|
|
||||||
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-aa\\beats-eod.dat')), #-5Hz delta f, bad fit
|
|
||||||
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ab\\beats-eod.dat')), #-5Hz delta f, bad fit
|
|
||||||
(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat')), #-15Hz delta f, good fit
|
|
||||||
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ad\\beats-eod.dat')), #-15Hz delta f, horrible fit
|
|
||||||
#(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ae\\beats-eod.dat')), #-15Hz delta f, maxfev way to high so horrible
|
|
||||||
(os.path.join('D:\\jar_project\\JAR\\2020-06-22-af\\beats-eod.dat'))] #-15Hz delta f, good fit
|
|
||||||
|
|
||||||
#np.array(sorted(glob.glob('D:\\jar_project\\JAR\\2020*\\beats-eod.dat')))
|
|
||||||
|
|
||||||
infodatasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\info.dat')),
|
|
||||||
(os.path.join('D:\\jar_project\\JAR\\2020-06-22-af\\info.dat'))]
|
|
||||||
|
|
||||||
|
|
||||||
time_all = []
|
|
||||||
freq_all = []
|
|
||||||
|
|
||||||
ID = []
|
|
||||||
|
|
||||||
for infodataset in infodatasets:
|
|
||||||
i = parse_infodataset(infodataset)
|
|
||||||
identifier = i[0]
|
|
||||||
ID.append(identifier)
|
|
||||||
|
|
||||||
|
|
||||||
for idx, dataset in enumerate(datasets):
|
|
||||||
#input of the function
|
|
||||||
frequency, time, amplitude, eodf, deltaf, stimulusf, duration, pause = parse_dataset(dataset)
|
|
||||||
dm = np.mean(duration)
|
|
||||||
pm = np.mean(pause)
|
|
||||||
timespan = dm + pm
|
|
||||||
start = (time[0][0] + time[1][0]) / 2
|
|
||||||
stop = (time[0][-1] + time[1][-1]) / 2
|
|
||||||
mf , tnew = mean_traces(start, stop, timespan, frequency, time) # maybe fixed timespan/sampling rate
|
|
||||||
|
|
||||||
#for i in range(len(mf)):
|
|
||||||
|
|
||||||
cf, ct = mean_noise_cut(mf, tnew, n=1250)
|
|
||||||
|
|
||||||
cf_arr = np.array(cf)
|
|
||||||
ct_arr = np.array(ct)
|
|
||||||
|
|
||||||
norm = norm_function(cf_arr, ct_arr, onset_point = dm - dm, offset_point = dm) #dm-dm funktioniert nur wenn onset = 0 sec
|
|
||||||
|
|
||||||
freq_all.append(norm.tolist())
|
|
||||||
time_all.append(ct_arr)
|
|
||||||
|
|
||||||
plt.plot(ct_arr, norm, color = 'grey', label='fish=%s' % ID[idx])
|
|
||||||
|
|
||||||
# fit function
|
|
||||||
sv, sc = curve_fit(step_response, ct_arr[ct_arr < dm], norm[ct_arr < dm]) #step_values and step_cov
|
|
||||||
|
|
||||||
# sorted a and tau
|
|
||||||
values = sort_values(sv)
|
|
||||||
|
|
||||||
'''
|
|
||||||
plt.plot(ct_arr[ct_arr < 100], step_response(ct_arr, *sv)[ct_arr < 100], color='orange',
|
|
||||||
label='fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(values))
|
|
||||||
'''
|
|
||||||
|
|
||||||
print('fish: a1, a2, tau1, tau2', values)
|
|
||||||
|
|
||||||
# average over all fish
|
|
||||||
mf_all , tnew_all = mean_traces(start, stop, timespan, freq_all, time_all)
|
|
||||||
|
|
||||||
plt.plot(tnew_all, mf_all, color = 'b', label = 'average', ls = 'dashed')
|
|
||||||
|
|
||||||
# fit for average
|
|
||||||
sv_all, sc_all = curve_fit(step_response, tnew_all[tnew_all < dm], mf_all[tnew_all < dm]) #step_values and step_cov
|
|
||||||
|
|
||||||
values_all = sort_values(sv_all)
|
|
||||||
|
|
||||||
plt.plot(tnew_all[tnew_all < 100], step_response(tnew_all, *sv_all)[tnew_all < 100], color='orange',
|
|
||||||
label='average_fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(values_all))
|
|
||||||
|
|
||||||
print('average: a1, a2, tau1, tau2', values_all)
|
|
||||||
|
|
||||||
const_line = plt.axhline(y = 0.632)
|
|
||||||
stimulus_duration = plt.hlines(y = -0.25, xmin = 0, xmax = 100, color = 'r', label = 'stimulus_duration')
|
|
||||||
base_line = plt.axhline(y = 0, color = 'black', ls = 'dotted', linewidth = '1')
|
|
||||||
|
|
||||||
plt.xlim([-10,220])
|
|
||||||
plt.xlabel('time [s]')
|
|
||||||
plt.ylabel('rel. JAR magnitude')
|
|
||||||
plt.title('relative JAR')
|
|
||||||
plt.savefig('relative JAR')
|
|
||||||
plt.legend(loc = 'lower right')
|
|
||||||
plt.show()
|
|
||||||
embed()
|
|
||||||
|
|
||||||
# Fragen:
|
|
||||||
# wie offset point wenn nicht start bei 0 sec? über zeitdatenpunkt? oder einfach immer bei 0 onset..?
|
|
||||||
# wie zip ich ID liste mit plot (für eine for schleife) zusammen?
|
|
||||||
# welche Stimulusintesität?
|
|
||||||
# start/stop/timespan ok?
|
|
Loading…
Reference in New Issue
Block a user