From 94a169701908fedca92f128a9fda327aaa6c7cf3 Mon Sep 17 00:00:00 2001 From: xaver Date: Sat, 14 Nov 2020 19:03:48 +0100 Subject: [PATCH] 14.11 --- apteronotus_code/avg_test.py | 20 ++ .../figure_apteronotus_gain_plot.py | 9 + .../figure_apteronotus_gain_plot_5Hz.py | 114 +++++++++ ...igure_apteronotus_gaincurve_cutofff_tau.py | 10 +- .../figure_apteronotus_jar_filter_fit.py | 2 +- .../figure_apteronotus_jar_plot.py | 224 +++++++++++++++--- .../figure_apteronotus_rms_gaincurve.py | 6 +- apteronotus_code/sin_all.py | 182 +++++++------- apteronotus_code/sin_all_model.py | 142 ++++++----- eigenmannia_code/eigenmannia_jar_stacked.py | 22 +- eigenmannia_code/eigenmannia_jar_subplot.py | 7 +- eigenmannia_code/figure_eigen_gain_plot.py | 128 ++++++++++ eigenmannia_code/figure_eigen_jar_plot.py | 168 +++++++++++++ 13 files changed, 819 insertions(+), 215 deletions(-) create mode 100644 apteronotus_code/avg_test.py create mode 100644 apteronotus_code/figure_apteronotus_gain_plot_5Hz.py create mode 100644 eigenmannia_code/figure_eigen_gain_plot.py create mode 100644 eigenmannia_code/figure_eigen_jar_plot.py diff --git a/apteronotus_code/avg_test.py b/apteronotus_code/avg_test.py new file mode 100644 index 0000000..08727b2 --- /dev/null +++ b/apteronotus_code/avg_test.py @@ -0,0 +1,20 @@ +import matplotlib.pyplot as plt +import numpy as np +import pylab +from IPython import embed +from scipy.optimize import curve_fit +from jar_functions import gain_curve_fit +from jar_functions import avgNestedLists +import matplotlib as mpl +from matplotlib import cm + +ab = [] +a = [1, 1, None, 1] +b = [2, 2, 2, 2] +ab.append(a) +ab.append(b) +print(ab) +print(np.mean(ab, axis = 0)) +#av = avgNestedLists(np.array(ab)) +#print(av) + diff --git a/apteronotus_code/figure_apteronotus_gain_plot.py b/apteronotus_code/figure_apteronotus_gain_plot.py index 7dfe595..b77c1a3 100644 --- a/apteronotus_code/figure_apteronotus_gain_plot.py +++ b/apteronotus_code/figure_apteronotus_gain_plot.py @@ -30,6 +30,7 @@ gains = [] taus = [] f_cs = [] predicts = [] +maxgains = [] for ID in identifier: predict = [] @@ -47,10 +48,18 @@ for ID in identifier: f_cs.append(f_cutoff) # predict of gain + print('max gain:', np.max(gain)) + maxgains.append(np.max(gain)) + for f in amf: G = np.max(gain) / np.sqrt(1 + (2 * ((np.pi * f * sinv[0]) ** 2))) predict.append(G) predicts.append(predict) +print('absolute max gain:', np.max(maxgains)) +print('absolute min gain:', np.min(maxgains)) +print('absolute max f_c:', np.max(f_cs)) +print('absolute min f_c:', np.min(f_cs)) + sort = sorted(zip(f_cs, identifier)) print(sort) diff --git a/apteronotus_code/figure_apteronotus_gain_plot_5Hz.py b/apteronotus_code/figure_apteronotus_gain_plot_5Hz.py new file mode 100644 index 0000000..c997137 --- /dev/null +++ b/apteronotus_code/figure_apteronotus_gain_plot_5Hz.py @@ -0,0 +1,114 @@ +import matplotlib.pyplot as plt +import numpy as np +import pylab +from IPython import embed +from scipy.optimize import curve_fit +from matplotlib.mlab import specgram +import os +from jar_functions import gain_curve_fit + +plt.rcParams.update({'font.size': 12}) + +identifier = [#'2018lepto1', + #'2018lepto4', + #'2018lepto5', + #'2018lepto76', + '2018lepto98', + #'2019lepto03', + #'2019lepto24', + #'2019lepto27', + #'2019lepto30', + #'2020lepto04', + #'2020lepto06', + '2020lepto16', + '2020lepto19', + '2020lepto20' + ] + +amfs = [] +gains = [] +taus = [] +f_cs = [] +predicts = [] +for ID in identifier: + predict = [] + + print(ID) + amf = np.load('5Hz_amf_%s.npy' %ID) + amfs.append(amf) + gain = np.load('5Hz_gain_%s.npy' %ID) + gains.append(gain) + + sinv, sinc = curve_fit(gain_curve_fit, amf, gain, [2, 3]) + #print('tau:', sinv[0]) + taus.append(sinv[0]) + f_cutoff = abs(1 / (2*np.pi*sinv[0])) + print('f_cutoff:', f_cutoff) + f_cs.append(f_cutoff) + + # predict of gain + for f in amf: + G = np.max(gain) / np.sqrt(1 + (2 * ((np.pi * f * sinv[0]) ** 2))) + predict.append(G) + predicts.append(predict) + +sort = sorted(zip(f_cs, identifier)) +print(sort) +# order of plotting: 2018lepto98, 2020lepto16, 2020lepto19, 2020lepto19, 2020lepto20 +# order of f_c: 2020lepto20, 2020lepto16, 2018lepto98, 2020lepto19 + +fig = plt.figure(figsize=(8.27,11.69)) +ax0 = fig.add_subplot(221) +fig.text(0.05, 0.5, 'gain [Hz/(mV/cm)]', ha='center', va='center', rotation='vertical') +fig.text(0.5, 0.04, 'envelope frequency [Hz]', ha='center', va='center') + +ax0.set_xlim(0.0007, 1.5) +ax0.set_ylim(0.001, 10) +ax0.plot(amfs[0], gains[0],'o' , label = 'gain') +ax0.plot(amfs[0], predicts[0], label = 'fit') +ax0.axvline(x=f_cs[0], ymin=0, ymax=5, ls='-', alpha=0.5, label = 'cutoff frequency') +ax0.set_xscale('log') +ax0.set_yscale('log') +ax0.axes.xaxis.set_ticklabels([]) +print('max[0]:', np.max(gain[0])) + +ax1 = fig.add_subplot(222) +ax1.set_xlim(0.0007, 1.5) +ax1.set_ylim(0.001, 10) +ax1.plot(amfs[1], gains[1],'o' , label = 'gain') +ax1.plot(amfs[1], predicts[1], label = 'fit') +ax1.axvline(x=f_cs[1], ymin=0, ymax=5, ls='-', alpha=0.5, label = 'cutoff frequency') +ax1.set_xscale('log') +ax1.set_yscale('log') +ax1.axes.yaxis.set_ticklabels([]) +ax1.axes.xaxis.set_ticklabels([]) +print('max[1]:', np.max(gain[1])) + +ax2 = fig.add_subplot(223) +ax2.set_xlim(0.0007, 1.5) +ax2.set_ylim(0.001, 10) +ax2.plot(amfs[0], gains[0],'o' , label = 'gain') +ax2.plot(amfs[0], predicts[0], label = 'fit') +ax2.axvline(x=f_cs[0], ymin=0, ymax=5, ls='-', alpha=0.5, label = 'cutoff frequency') +ax2.set_xscale('log') +ax2.set_yscale('log') +print('max[2]:', np.max(gain[2])) + +ax3 = fig.add_subplot(224) +ax3.set_xlim(0.0007, 1.5) +ax3.set_ylim(0.001, 10) +ax3.plot(amfs[2], gains[2],'o' , label = 'gain') +ax3.plot(amfs[2], predicts[2], label = 'fit') +ax3.axvline(x=f_cs[2], ymin=0, ymax=5, ls='-', alpha=0.5, label = 'cutoff frequency') +ax3.set_xscale('log') +ax3.set_yscale('log') +ax3.axes.yaxis.set_ticklabels([]) +print('max[3]:', np.max(gain[3])) + +#plt.legend(loc = 'lower left') + +plt.show() + + +#np.save('f_c', f_c) +#np.save('tau', tau) \ No newline at end of file diff --git a/apteronotus_code/figure_apteronotus_gaincurve_cutofff_tau.py b/apteronotus_code/figure_apteronotus_gaincurve_cutofff_tau.py index b04b2dc..6a30387 100644 --- a/apteronotus_code/figure_apteronotus_gaincurve_cutofff_tau.py +++ b/apteronotus_code/figure_apteronotus_gaincurve_cutofff_tau.py @@ -7,7 +7,9 @@ from matplotlib.mlab import specgram import os from jar_functions import gain_curve_fit -identifier = ['2018lepto98'] +plt.rcParams.update({'font.size': 12}) + +identifier = ['2018lepto4'] tau = [] f_c = [] @@ -32,7 +34,7 @@ for ID in identifier: predict.append(G) print(np.max(gain)) - fig = plt.figure() + fig = plt.figure(figsize=(8.27, 11.69/2)) ax = fig.add_subplot() ax.plot(amf, gain,'o' , label = 'gain') ax.plot(amf, predict, label = 'fit') @@ -40,9 +42,9 @@ for ID in identifier: ax.set_xscale('log') ax.set_yscale('log') ax.set_ylabel('gain [Hz/(mV/cm)]') - ax.set_xlabel('envelope_frequency [Hz]') + ax.set_xlabel('envelope frequency [Hz]') ax.set_title('gaincurve %s' %ID) - plt.legend(loc = 'lower left') + #plt.legend(loc = 'lower left') plt.show() diff --git a/apteronotus_code/figure_apteronotus_jar_filter_fit.py b/apteronotus_code/figure_apteronotus_jar_filter_fit.py index f41b8ea..b153fe3 100644 --- a/apteronotus_code/figure_apteronotus_jar_filter_fit.py +++ b/apteronotus_code/figure_apteronotus_jar_filter_fit.py @@ -82,7 +82,7 @@ for ident in identifier: # plt.show() # filter by running average - fig = plt.figure(figsize = (8,14)) + fig = plt.figure(figsize = (8.27,11.69)) fig.suptitle('JAR trace spectogram 2018lepto98:\n subtraction of mean and running average') ax = fig.add_subplot(211) ax.plot(time, jm, color = 'C0', label = '1)') diff --git a/apteronotus_code/figure_apteronotus_jar_plot.py b/apteronotus_code/figure_apteronotus_jar_plot.py index 4324f6e..af0e358 100644 --- a/apteronotus_code/figure_apteronotus_jar_plot.py +++ b/apteronotus_code/figure_apteronotus_jar_plot.py @@ -17,22 +17,37 @@ from jar_functions import gain_curve_fit def take_second(elem): # function for taking the names out of files return elem[1] - -identifier = ['2018lepto1', - '2018lepto4', - '2018lepto5', - '2018lepto76', +identifier = [#'2018lepto1', + #'2018lepto4', + #'2018lepto5', + #'2018lepto76', + '2018lepto98', + #'2019lepto03', + #'2019lepto24', + #'2019lepto27', + #'2019lepto30', + #'2020lepto04', + #'2020lepto06', + #'2020lepto16', + #'2020lepto19', + #'2020lepto20' + ] +identifier_5Hz = [#'2018lepto1', + #'2018lepto4', + #'2018lepto5', + #'2018lepto76', '2018lepto98', - '2019lepto03', - '2019lepto24', - '2019lepto27', - '2019lepto30', - '2020lepto04', - '2020lepto06', - '2020lepto16', - '2020lepto19', - '2020lepto20' + #'2019lepto03', + #'2019lepto24', + #'2019lepto27', + #'2019lepto30', + #'2020lepto04', + #'2020lepto06', + #'2020lepto16', + #'2020lepto19', + #'2020lepto20' ] + for ident in identifier: times = [] @@ -47,15 +62,15 @@ for ident in identifier: amf = [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1] - data = sorted(np.load('%s files.npy' %ident), key = take_second) # list with filenames in it + data = sorted(np.load('5Hz_%s files.npy' %ident), key = take_second) # list with filenames in it for i, d in enumerate(data): dd = list(d) if dd[1] == '1' or dd[1] == '0.2' or dd[1] == '0.05' or dd[1] == '0.01' or dd[1] == '0.005' or dd[1] == '0.001': - jar = np.load('%s.npy' %dd) # load data for every file name + jar = np.load('5Hz_%s.npy' %dd) # load data for every file name jm = jar - np.mean(jar) # low-pass filtering by subtracting mean - time = np.load('%s time.npy' %dd) # time file + time = np.load('5Hz_%s time.npy' %dd) # time file dt = time[1] - time[0] n = int(1/float(d[1])/dt) @@ -73,7 +88,7 @@ for ident in identifier: jms.append(jm) times.append(time) else: - print('1:', dd) + #print('1:', dd) amfreq1.append(dd[1]) jars1.append(jm - cutf) jms1.append(jm) @@ -81,51 +96,184 @@ for ident in identifier: if len(jars) != 6: continue + sample = 100000 + fig = plt.figure(figsize=(8.27,11.69)) fig.suptitle('%s' %ident) - fig.text(0.06, 0.5, 'frequency [Hz]', ha='center', va='center', rotation='vertical') + fig.text(0.06, 0.5, 'fish frequency [Hz]', ha='center', va='center', rotation='vertical', color = 'C0') + fig.text(0.97, 0.5, 'stimulus amplitude [mV/cm]', ha='center', va='center', rotation='vertical', color = 'red') fig.text(0.5, 0.04, 'time [s]', ha='center', va='center') ax0 = fig.add_subplot(611) - ax0.plot(times[0], jms[0]) - #ax0.plot(times[0], jars[0]) + print('absolute frequency shift 0.001Hz:', np.max(jars[0]) - np.min(jars[0])) + ax0.plot(times[0], jars[0], zorder = 20) + #ax0.set_zorder(1) ax0.set_ylim(-12, 12) - #plt.text(-0.1, 1.05, "A)", fontweight=550, transform=ax0.transAxes) + + lower0 = 0 + upper0 = 2000 + x0 = np.linspace(lower0, upper0, sample) + y0 = (sin_response(np.linspace(lower0, upper0, sample), 0.001, -np.pi/2, .35) + 0.5) + ax0_0 = ax0.twinx() + ax0_0.set_ylim(-0.2, 1.2) + ax0_0.plot(x0, y0, color = 'red', zorder = 1, alpha = 0.5) + #ax0_0.set_zorder(2) ax1 = fig.add_subplot(612) - ax1.plot(times[1], jms[1]) - #ax1.plot(times[1], jars[1]) + print('absolute frequency shift 0.005 Hz:', np.max(jars[1]) - np.min(jars[1])) + ax1.plot(times[1], jars[1]) ax1.set_ylim(-12, 12) - #plt.text(-0.1, 1.05, "B)", fontweight=550, transform=ax1.transAxes) + + lower1 = 0 + upper1 = 400 + x1 = np.linspace(lower1, upper1, sample) + y1 = (sin_response(np.linspace(lower1, upper1, sample), 0.005, -np.pi / 2, .35) + 0.5) + ax1_0 = ax1.twinx() + ax1_0.set_ylim(-0.2, 1.2) + ax1_0.plot(x1, y1, color='red', alpha = 0.5) ax2 = fig.add_subplot(613) - ax2.plot(times[2], jms[2]) - #ax2.plot(times[2], jars[2]) + print('absolute frequency shift 0.01 Hz:', np.max(jars[2]) - np.min(jars[2])) + ax2.plot(times[2], jars[2]) ax2.set_ylim(-12, 12) - #plt.text(-0.1, 1.05, "C)", fontweight=550, transform=ax2.transAxes) + + lower2 = 0 + upper2 = 400 + x2 = np.linspace(lower2, upper2, sample) + y2 = (sin_response(np.linspace(lower2, upper2, sample), 0.01, np.pi / 2, -0.35) + 0.5) + ax2_0 = ax2.twinx() + ax2_0.set_ylim(-0.2, 1.2) + ax2_0.plot(x2, y2, color='red', alpha = 0.5) ax3 = fig.add_subplot(614) - ax3.plot(times[3], jms[3]) - #ax3.plot(times[3], jars[3]) + print('absolute frequency shift 0.02 Hz:', np.max(jars[3]) - np.min(jars[3])) + ax3.plot(times[3], jars[3]) ax3.set_ylim(-12, 12) - #plt.text(-0.1, 1.05, "D)", fontweight=550, transform=ax3.transAxes) + + lower3 = 0 + upper3 = 200 + x3 = np.linspace(lower3, upper3, sample) + y3 = (sin_response(np.linspace(lower3, upper3, sample), 0.05, np.pi / 2, -0.35) + 0.5) + ax3_0 = ax3.twinx() + ax3_0.set_ylim(-0.2, 1.2) + ax3_0.plot(x3, y3, color='red', alpha = 0.5) ax4 = fig.add_subplot(615) - ax4.plot(times[4], jms[4]) - #ax4.plot(times[4], jars[4]) + print('absolute frequency shift 0.5 Hz:', np.max(jars[4]) - np.min(jars[4])) + ax4.plot(times[4], jars[4]) ax4.set_ylim(-12, 12) - # plt.text(-0.1, 1.05, "E)", fontweight=550, transform=ax4.transAxes) + + lower4 = 0 + upper4 = 200 + x4 = np.linspace(lower4, upper4, sample) + y4 = (sin_response(np.linspace(lower4, upper4, sample), 0.2, np.pi / 2, -0.35) + 0.5) + ax4_0 = ax4.twinx() + ax4_0.set_ylim(-0.2, 1.2) + ax4_0.plot(x4, y4, color='red', alpha = 0.5) ax5 = fig.add_subplot(616) - ax5.plot(times[5], jms[5]) - #ax5.plot(times[5], jars[5]) + print('absolute frequency shift 1 Hz:', np.max(jars[5]) - np.min(jars[5])) + ax5.plot(times[5], jars[5]) ax5.set_ylim(-12, 12) - #plt.text(-0.1, 1.05, "F)", fontweight=550, transform=ax5.transAxes) + lower5 = 0 + upper5 = 200 + x5 = np.linspace(lower5, upper5, sample) + y5 = (sin_response(np.linspace(lower5, upper5, sample), 1, np.pi / 2, -0.35) + 0.5) + ax5_0 = ax5.twinx() + ax5_0.plot(x5, y5, color='red', lw = 0.5, alpha = 0.5) + ax5_0.set_ylim(-0.2, 1.2) + ''' + +for ident in identifier_5Hz: + + times = [] + jars = [] + jms = [] + amfreq = [] + + times1 = [] + jars1 = [] + jms1 = [] + amfreq1 = [] + + amf = [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1] + print('5Hz') + data = sorted(np.load('5Hz_%s files.npy' % ident), key=take_second) # list with filenames in it + + for i, d in enumerate(data): + dd = list(d) + if dd[1] == '1' or dd[1] == '0.2' or dd[1] == '0.05' or dd[1] == '0.01' or dd[1] == '0.005' or dd[1] == '0.001': + jar = np.load('5Hz_%s.npy' % dd) # load data for every file name + jm = jar - np.mean(jar) # low-pass filtering by subtracting mean + + time = np.load('5Hz_%s time.npy' % dd) # time file + dt = time[1] - time[0] + + n = int(1 / float(d[1]) / dt) + cutf = mean_noise_cut(jm, n=n) + cutt = time + if dd[1] == '0.001': + amfreq1.append(dd[1]) + jars1.append(jm - cutf) + jms1.append(jm) + times1.append(time) + if dd[1] not in amfreq: + #print(dd) + amfreq.append(dd[1]) + jars.append(jm - cutf) + jms.append(jm) + times.append(time) + else: + #print('1:', dd) + amfreq1.append(dd[1]) + jars1.append(jm - cutf) + jms1.append(jm) + times1.append(time) + if len(jars) != 6: + continue + + ax6 = fig.add_subplot(622) + ax6.plot(times1[0], jars1[0]) + print('5Hz_absolute frequency shift 0.001Hz:', np.max(jms1[0]) - np.min(jms1[0])) + ax6.set_ylim(-12, 12) + ax6.axes.set_yticklabels([]) + plt.text(-0.05, 1.15, "B)", fontweight=550, transform=ax6.transAxes) + + ax7 = fig.add_subplot(624) + ax7.plot(times1[1], jars1[1]) + print('5Hz_absolute frequency shift 0.005Hz:', np.max(jms1[1]) - np.min(jms1[1])) + ax7.set_ylim(-12, 12) + ax7.axes.set_yticklabels([]) + + ax8 = fig.add_subplot(626) + ax8.plot(times1[2], jars1[2]) + print('5Hz_absolute frequency shift 0.05Hz:', np.max(jms1[2]) - np.min(jms1[2])) + ax8.set_ylim(-12, 12) + ax8.axes.set_yticklabels([]) + + ax9 = fig.add_subplot(6,2,8) + ax9.plot(times1[3], jars1[3]) + print('5Hz_absolute frequency shift 0.02Hz:', np.max(jms1[3]) - np.min(jms1[3])) + ax9.set_ylim(-12, 12) + ax9.axes.set_yticklabels([]) + + ax10 = fig.add_subplot(6,2,10) + ax10.plot(times1[4], jars1[4]) + print('5Hz_absolute frequency shift 0.5Hz:', np.max(jms1[4]) - np.min(jms1[4])) + ax10.set_ylim(-12, 12) + ax10.axes.set_yticklabels([]) + + ax11 = fig.add_subplot(6,2,12) + ax11.plot(times1[5], jars1[5]) + print('5Hz_absolute frequency shift 1Hz:', np.max(jms1[5]) - np.min(jms1[5])) + ax11.set_ylim(-12, 12) + ax11.axes.set_yticklabels([]) + ''' plt.subplots_adjust(left=0.125, bottom=0.1, right=0.9, top=0.9, - wspace=0.2, + wspace=0.1, hspace=0.35) plt.show() \ No newline at end of file diff --git a/apteronotus_code/figure_apteronotus_rms_gaincurve.py b/apteronotus_code/figure_apteronotus_rms_gaincurve.py index bfa4d67..4487e69 100644 --- a/apteronotus_code/figure_apteronotus_rms_gaincurve.py +++ b/apteronotus_code/figure_apteronotus_rms_gaincurve.py @@ -19,7 +19,7 @@ plt.rcParams.update({'font.size': 12}) def take_second(elem): # function for taking the names out of files return elem[1] -identifier = ['2020lepto19'] +identifier = ['2018lepto5'] for ident in identifier: predict = [] @@ -124,10 +124,10 @@ for ident in identifier: # condition needed to be fulfilled: RMS < threshold or RMS < mean(RMS) idx_arr = (rootmeansquare_arr < threshold_arr) | (rootmeansquare_arr < np.mean(rootmeansquare_arr)) - fig = plt.figure(figsize = (8,14)) + fig = plt.figure(figsize = (8.27, 11.69)) fig.suptitle('gaincurve and RMS %s' %ident) ax0 = fig.add_subplot(2, 1, 1) - ax0.plot(amfreq_arr[idx_arr], mgain_arr[idx_arr], 'o') + ax0.plot(amfreq_arr, mgain_arr, 'o') ax0.set_yscale('log') ax0.set_xscale('log') ax0.set_ylabel('gain [Hz/(mV/cm)]') diff --git a/apteronotus_code/sin_all.py b/apteronotus_code/sin_all.py index be66ef9..404b04a 100644 --- a/apteronotus_code/sin_all.py +++ b/apteronotus_code/sin_all.py @@ -7,125 +7,143 @@ from jar_functions import gain_curve_fit from jar_functions import avgNestedLists import matplotlib as mpl from matplotlib import cm +import math -#plt.rcParams.update({'font.size': 18}) +#plt.rcParams.update({'font.size': 16}) -identifier_uniform = ['2018lepto1', +identifier = [#'2018lepto1', #'2018lepto4', - '2018lepto5', - '2018lepto76', + #'2018lepto5', + #'2018lepto76', '2018lepto98', #'2019lepto03', - '2019lepto24', + #'2019lepto24', #'2019lepto27', #'2019lepto30', #'2020lepto04', - '2020lepto06', - #'2020lepto16', - #'2020lepto19', - #'2020lepto20' - ] -identifier = ['2018lepto1', - '2018lepto4', - '2018lepto5', - '2018lepto76', - '2018lepto98', - '2019lepto03', - '2019lepto24', - '2019lepto27', - '2019lepto30', - '2020lepto04', - '2020lepto06', + #'2020lepto06', '2020lepto16', '2020lepto19', '2020lepto20' ] -custom_amf = [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1] -#colors = ['dimgray', 'dimgrey', 'gray', 'grey', 'darkgray', 'darkgrey', 'silver', 'lightgray', 'lightgrey', 'gainsboro', 'whitesmoke'] -colorss = ['g', 'b', 'r', 'y', 'c', 'm', 'k'] -all = [] -new_all = [] -for ident in identifier: - data = np.load('gain_%s.npy' %ident) - all.append(data) -for ident in identifier_uniform: - data = np.load('gain_%s.npy' % ident) - new_all.append(data) - -av = avgNestedLists(all) -new_av = avgNestedLists(new_all) - fig = plt.figure(figsize=(8.27, 11.69/2)) ax = fig.add_subplot(111) -ax.plot(custom_amf, av, 'o', label = 'normal') -#ax.plot(amf, new_av, 'o', label = 'uniform') - -sinv, sinc = curve_fit(gain_curve_fit, custom_amf, av, [2, 3]) -predict = [] -for f in custom_amf: - G = np.max(av) / np.sqrt(1 + (2 * ((np.pi * f * sinv[0]) ** 2))) - predict.append(G) +custom_amf = [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1] tau = [] +IDs = [] f_c = [] fit = [] fit_amf = [] + +all_gains = [] for ID in identifier: + print(ID) - amf = np.load('amf_%s.npy' %ID) - gain = np.load('gain_%s.npy' %ID) + IDs.append(ID) + gain_10 = np.zeros(10) + amf = np.load('5Hz_amf_%s.npy' % ID) + gain = np.load('5Hz_gain_%s.npy' % ID) + b = 0 + for aa, a in enumerate(custom_amf): + if a in amf: + gain_10[aa] = gain[b] + b += 1 + else: + gain_10[aa] = None + print(gain_10) + #print(amf) + all_gains.append(gain_10) + sinv, sinc = curve_fit(gain_curve_fit, amf, gain) - #print('tau:', sinv[0]) + print('tau:', sinv[0]) tau.append(sinv[0]) f_cutoff = abs(1 / (2*np.pi*sinv[0])) print('f_cutoff:', f_cutoff) f_c.append(f_cutoff) fit.append(gain_curve_fit(amf, *sinv)) fit_amf.append(amf) - ax.axvline(x=f_cutoff, ymin=0, ymax=5, color='C0', ls='-', alpha=0.5, label='cutoff frequency') - + ax.axvline(x=f_cutoff, ymin=0, ymax=5, color='C0', ls='-', alpha=0.5) + +f_c_ID = zip(ID, f_c) + +mean = [] + +g0 = [] +g1 = [] +g2 = [] +g3 = [] +g4 = [] +g5 = [] +g6 = [] +g7 = [] +g8 = [] +g9 = [] +for g in all_gains: + if math.isnan(g[0]) is False: + g0.append(g[0]) + if math.isnan(g[1]) is False: + g1.append(g[1]) + if math.isnan(g[2]) is False: + g2.append(g[2]) + if math.isnan(g[3]) is False: + g3.append(g[3]) + if math.isnan(g[4]) is False: + g4.append(g[4]) + if math.isnan(g[5]) is False: + g5.append(g[5]) + if math.isnan(g[6]) is False: + g6.append(g[6]) + if math.isnan(g[7]) is False: + g7.append(g[7]) + if math.isnan(g[8]) is False: + g8.append(g[8]) + if math.isnan(g[9]) is False: + g9.append(g[9]) +print(g0) +print(np.mean(g0)) +print(g1) +print(np.mean(g1)) +print(g2) +print(np.mean(g2)) +print(g3) +print(np.mean(g3)) +print(g4) +print(np.mean(g4)) +print(g5) +print(np.mean(g5)) +print(g6) +print(np.mean(g6)) +print(g7) +print(np.mean(g7)) +print(g8) +print(np.mean(g8)) +print(g9) +print(np.mean(g9)) + +mean.append(np.mean(g0)) +mean.append(np.mean(g1)) +mean.append(np.mean(g2)) +mean.append(np.mean(g3)) +mean.append(np.mean(g4)) +mean.append(np.mean(g5)) +mean.append(np.mean(g6)) +mean.append(np.mean(g7)) +mean.append(np.mean(g8)) +mean.append(np.mean(g9)) + +print('maximum of mean:', np.max(mean)) + +ax.plot(custom_amf, mean, 'o') # uniformed: 2018lepto1, 2018lepto5, 2018lepto76, 2018lepto98, 2020lepto06, 2019lepto24, 2020lepto06 - -tau_uniform = [] -f_c_uniform = [] -fit_uniform = [] -fit_amf_uniform = [] -for ID in identifier_uniform: - print(ID) - amf = np.load('amf_%s.npy' %ID) - gain = np.load('gain_%s.npy' %ID) - - sinv, sinc = curve_fit(gain_curve_fit, amf, gain) - print('tau:', sinv[0]) - tau_uniform.append(sinv[0]) - f_cutoff = abs(1 / (2*np.pi*sinv[0])) - print('f_cutoff:', f_cutoff) - print('alpha:', sinv[1]) - f_c_uniform.append(f_cutoff) - fit_uniform.append(gain_curve_fit(amf, *sinv)) - fit_amf_uniform.append(amf) - - -colors = plt.cm.flag(np.linspace(0,1,len(fit_uniform))) - -#for ff ,f in enumerate(fit_uniform): -# ax.plot(fit_amf_uniform[ff], fit_uniform[ff],color = colorss[ff]) -# ax.axvline(x=f_c_uniform[ff], ymin=0, ymax=5, ls = '-', alpha = 0.5, color= colorss[ff])#colors_uniform[ff]) - ax.set_xscale('log') ax.set_yscale('log') ax.set_ylabel('gain [Hz/(mV/cm)]') ax.set_xlabel('envelope frequency [Hz]') ax.set_xlim(0.0007, 1.5) ax.set_ylim(0.001, 10) -ax.plot(custom_amf, predict) -#ax.plot(f_c, np.full(len(identifier), 0.0015), 'o', color = 'C0', alpha = 0.5, label = 'normal cutoff frequencies') -#ax.plot(f_c_uniform, np.full(len(identifier_uniform), 0.002), 'o', alpha = 0.5, c = 'C0', label = 'uniform cutoff frequencies') -#ax.legend(loc = 'center left') - - plt.show() embed() diff --git a/apteronotus_code/sin_all_model.py b/apteronotus_code/sin_all_model.py index e86bbe7..ed3885d 100644 --- a/apteronotus_code/sin_all_model.py +++ b/apteronotus_code/sin_all_model.py @@ -5,28 +5,24 @@ from IPython import embed from scipy.optimize import curve_fit from jar_functions import gain_curve_fit from jar_functions import avgNestedLists +from matplotlib import gridspec - -identifier = ['2018lepto1', - '2018lepto4', - '2018lepto5', - '2018lepto76', - '2018lepto98', - '2019lepto03', - '2019lepto24', - '2019lepto27', - '2019lepto30', - '2020lepto04', - '2020lepto06', - '2020lepto16', - '2020lepto19', - '2020lepto20' - ] +#plt.rcParams.update({'font.size': 16}) amf = [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1] -custom_f = np.logspace(-2, -1, 10) -custom_alpha = np.logspace(1.5, 1, 10) +low_lim = 0.005 +high_lim = 6 + +# subplot 1 +fig = plt.figure(figsize=(8.27,11.69)) +gs = gridspec.GridSpec(2, 2) +ax0 = fig.add_subplot(gs[0,:]) +fig.text(0.06, 0.5, 'gain [Hz/(mV/cm)]', ha='center', va='center', rotation='vertical') +fig.text(0.5, 0.04, 'envelope frequency [Hz]', ha='center', va='center') + +custom_f = np.logspace(-2, -1, 4) +custom_alpha = np.logspace(0.6, 0.1, 4) c_gain = [] custom_tau = abs(1 / (2 * np.pi * custom_f)) for t, a in zip(custom_tau, custom_alpha): @@ -35,70 +31,68 @@ for t, a in zip(custom_tau, custom_alpha): custom_g = gain_curve_fit(am, t, a) custom_gain.append(custom_g) c_gain.append(custom_gain) -fig = plt.figure() -ax = fig.add_subplot(111) -ax.set_xscale('log') -ax.set_yscale('log') -for cc, c in enumerate(c_gain): - ax.plot(amf, c) - ax.axvline(x=custom_f[cc], ymin=0, ymax=5, alpha=0.8) # colors_uniform[ff]) +col = ['blue', 'orange', 'green', 'purple'] +for cc, c in enumerate(c_gain): + ax0.plot(amf, c, c = col[cc]) + ax0.axvline(x=custom_f[cc], c = col[cc], ymin=0, ymax=5, alpha=0.5) -plt.show() +mean = avgNestedLists(c_gain) + +ax0.set_xscale('log') +ax0.set_yscale('log') +ax0.set_ylim(low_lim, high_lim) +ax0.plot(amf, mean, lw = 3, c = 'r') + +# subplot 2 +ax1 = fig.add_subplot(gs[1,0]) + +custom_f = np.logspace(-2, -1, 10) +custom_alpha = np.logspace(0.6, 0.1, 10) +c_gain = [] +custom_tau = abs(1 / (2 * np.pi * custom_f)) +for t, a in zip(custom_tau, custom_alpha): + custom_gain = [] + for am in amf: + custom_g = gain_curve_fit(am, t, a) + custom_gain.append(custom_g) + c_gain.append(custom_gain) +col = ['blue', 'orange', 'green'] +for cc, c in enumerate(c_gain): + ax1.plot(amf, c, c = 'C0') + ax1.axvline(x=custom_f[cc], c = 'C0', ymin=0, ymax=5, alpha=0.5) # colors_uniform[ff]) mean = avgNestedLists(c_gain) -fig = plt.figure() -ax = fig.add_subplot(111) -ax.set_xscale('log') -ax.set_yscale('log') -ax.plot(amf, mean) -plt.show() -all = [] +ax1.set_xscale('log') +ax1.set_yscale('log') +ax1.set_ylim(low_lim, high_lim) +ax1.plot(amf, mean, lw = 3, c = 'r') -for ident in identifier: - data = np.load('gain_%s.npy' %ident) - all.append(data) +# subplot 3 +ax2 = fig.add_subplot(gs[1,1]) -av = avgNestedLists(all) -embed() +custom_f = np.logspace(-2.75, -0.25, 10) +custom_alpha = np.logspace(0.6, 0.1, 10) +c_gain = [] +custom_tau = abs(1 / (2 * np.pi * custom_f)) +for t, a in zip(custom_tau, custom_alpha): + custom_gain = [] + for am in amf: + custom_g = gain_curve_fit(am, t, a) + custom_gain.append(custom_g) + c_gain.append(custom_gain) +col = ['blue', 'orange', 'green'] +for cc, c in enumerate(c_gain): + ax2.plot(amf, c, c = 'C0') + ax2.axvline(x=custom_f[cc], c = 'C0', ymin=0, ymax=5, alpha=0.5) # colors_uniform[ff]) -fig = plt.figure(figsize=(8.27,11.69/2)) -ax = fig.add_subplot(111) -ax.plot(amf, av, 'o', c = 'C0', label = 'gain') - -#plt.show() - -tau = [] -f_c = [] -fit = [] -fit_amf = [] -for ID in identifier: - print(ID) - amf = np.load('amf_%s.npy' %ID) - gain = np.load('gain_%s.npy' %ID) - - sinv, sinc = curve_fit(gain_curve_fit, amf, gain, [2, 3]) - #print('tau:', sinv[0]) - tau.append(sinv[0]) - f_cutoff = abs(1 / (2*np.pi*sinv[0])) - print('f_cutoff:', f_cutoff) - f_c.append(f_cutoff) - fit.append(gain_curve_fit(amf, *sinv)) - fit_amf.append(amf) -col = plt.cm.magma(np.linspace(0,0.8,len(fit))) -for ff ,f in enumerate(fit): - ax.plot(fit_amf[ff], fit[ff], c = col[ff]) - ax.axvline(x=f_c[ff], ymin=0, ymax=5, alpha=0.8, c = col[ff]) # colors_uniform[ff]) - -ax.set_xscale('log') -ax.set_yscale('log') -ax.set_title('gain average all fish') -ax.set_ylabel('gain [Hz/(mV/cm)]') -ax.set_xlabel('envelope_frequency [Hz]') -ax.set_ylim(0.0008, ) -#ax.plot(f_c, np.full(len(identifier), 0.0015), 'o', alpha = 0.5, c = 'darkorange', label = 'cutoff frequencies') -ax.legend(loc = 'center left') +mean = avgNestedLists(c_gain) +ax2.set_xscale('log') +ax2.set_yscale('log') +ax2.set_ylim(low_lim, high_lim) +ax2.set_yticklabels([]) +ax2.plot(amf, mean, lw = 3, c = 'r') plt.show() embed() diff --git a/eigenmannia_code/eigenmannia_jar_stacked.py b/eigenmannia_code/eigenmannia_jar_stacked.py index e281e80..f0bf0bf 100644 --- a/eigenmannia_code/eigenmannia_jar_stacked.py +++ b/eigenmannia_code/eigenmannia_jar_stacked.py @@ -12,12 +12,12 @@ from jar_functions import get_time_zeros from jar_functions import import_data_eigen from scipy.signal import savgol_filter -plt.rcParams.update({'font.size': 18}) +plt.rcParams.update({'font.size': 12}) base_path = 'D:\\jar_project\\JAR\\eigenmannia\\deltaf' #2015eigen8 no nix files -identifier = [#'2013eigen13', +identifier = ['2013eigen13', '2015eigen16','2015eigen17', '2015eigen19', '2020eigen22','2020eigen32'] @@ -32,8 +32,8 @@ for ID in identifier: delta_f, duration = parse_stimuli_dat(stimuli_dat) dur = int(duration[0][0:2]) print(delta_f) - if delta_f != [4.0]: - continue + #if delta_f != [-4.0]: + # continue data, pre_data, dt = import_data_eigen(datapath) #hstack concatenate: 'glue' pre_data and data @@ -74,24 +74,24 @@ for ID in identifier: if i > 15 and i < 55: j.append(jar4[idx]) - r = np.median(j) - np.median(b) + r = (np.median(j) - np.median(b)) / 4 # divided by 4 cause of data at 4th harmonic, therefore response 4 times higher print('response:', r) deltaf.append(delta_f[0]) response.append(r) - plt.figure(figsize = (14,8)) + plt.figure(figsize = (8.27,11.69/2)) plt.imshow(spec4, cmap='jet', origin='lower', extent=(times[0], times[-1], lim0, lim1), aspect='auto', vmin=-80, vmax=-10) - plt.plot(cut_time_jar, jar4, 'k', label = 'peak detection trace', lw = 2) - plt.hlines(y=lim0 + 5, xmin=10, xmax=70, lw=4, color='yellow', label='stimulus duration') + plt.plot(cut_time_jar, jar4, color = 'k', label = 'peak detection trace', lw = 2) plt.hlines(y=lim0 + 5, xmin=0, xmax=10, lw=4, color='red', label='pause') + plt.hlines(y=lim0 + 5, xmin=10, xmax=70, lw=4, color='gold', label='stimulus duration') plt.title('spectogram %s, deltaf: %sHz' %tuple(ID_delta_f)) plt.xlim(times[0],times[-1]) #embed() - #plt.xticks((times[0], 10, 20, 30, 40, 50, 60, times[-1]), [0, 10, 20, 30 ,40, 50, 60, 70]) + plt.xticks((times[0], 10, 20, 30, 40, 50, 60, times[-1]), [0, 10, 20, 30 ,40, 50, 60, 70]) plt.xlabel('time [s]') plt.ylabel('frequency [Hz]') plt.legend(loc = 'best') - plt.show() + #plt.show() delta_f_ID = [str(delta_f[0]).split('.')[0], ID] plt.close() @@ -99,4 +99,4 @@ for ID in identifier: res_df = sorted(zip(deltaf,response)) - #np.save('res_df_%s_new' %ID, res_df) + np.save('res_df_%s_new' %ID, res_df) diff --git a/eigenmannia_code/eigenmannia_jar_subplot.py b/eigenmannia_code/eigenmannia_jar_subplot.py index 4742f0e..6ee11ea 100644 --- a/eigenmannia_code/eigenmannia_jar_subplot.py +++ b/eigenmannia_code/eigenmannia_jar_subplot.py @@ -12,7 +12,7 @@ from jar_functions import get_time_zeros from jar_functions import import_data_eigen from scipy.signal import savgol_filter -#plt.rcParams.update({'font.size': 18}) +plt.rcParams.update({'font.size': 10}) base_path = 'D:\\jar_project\\JAR\\eigenmannia\\deltaf' @@ -107,6 +107,7 @@ ax0.set_xlim(times[0],times[-1]) ax0.set_ylabel('frequency [Hz]') ax0.axes.xaxis.set_ticklabels([]) ax0.set_title('∆F -2 Hz') +plt.xticks((1.7, 10, 20, 30, 40, 50, 60, times[-1])) ax1 = fig.add_subplot(222) ax1.imshow(specs[2], cmap='jet', origin='lower', extent=(times[0], times[-1], sub_lim0[2], sub_lim1[2]), aspect='auto', vmin=-80, vmax=-10) @@ -116,6 +117,7 @@ ax1.axes.xaxis.set_ticklabels([]) #ax1.axes.yaxis.set_ticklabels([]) ax1.set_title('∆F 2 Hz') ax1.get_shared_y_axes().join(ax0, ax1) +plt.xticks((1.7, 10, 20, 30, 40, 50, 60, times[-1])) ax2 = fig.add_subplot(223) ax2.imshow(specs[1], cmap='jet', origin='lower', extent=(times[0], times[-1], sub_lim0[1], sub_lim1[1]), aspect='auto', vmin=-80, vmax=-10) @@ -124,6 +126,7 @@ ax2.set_xlim(times[0],times[-1]) ax2.set_ylabel('frequency [Hz]') ax2.set_xlabel('time [s]') ax2.set_title('∆F -10 Hz') +plt.xticks((1.7, 10, 20, 30, 40, 50, 60, times[-1]), [0, 10, 20, 30 ,40, 50, 60, 70]) ax3 = fig.add_subplot(224) ax3.imshow(specs[3], cmap='jet', origin='lower', extent=(times[0], times[-1], sub_lim0[3], sub_lim1[3]), aspect='auto', vmin=-80, vmax=-10) @@ -132,7 +135,7 @@ ax3.set_xlim(times[0],times[-1]) ax3.set_xlabel('time [s]') #ax3.axes.yaxis.set_ticklabels([]) ax3.set_title('∆F 10 Hz') - +plt.xticks((1.7, 10, 20, 30, 40, 50, 60, times[-1]), [0, 10, 20, 30 ,40, 50, 60, 70]) plt.subplots(sharex = True, sharey = True) plt.show() diff --git a/eigenmannia_code/figure_eigen_gain_plot.py b/eigenmannia_code/figure_eigen_gain_plot.py new file mode 100644 index 0000000..cc93b3b --- /dev/null +++ b/eigenmannia_code/figure_eigen_gain_plot.py @@ -0,0 +1,128 @@ +import matplotlib.pyplot as plt +import numpy as np +import pylab +from IPython import embed +from scipy.optimize import curve_fit +from matplotlib.mlab import specgram +import os +from jar_functions import gain_curve_fit + +plt.rcParams.update({'font.size': 10}) + +identifier = ['2015eigen8', + '2015eigen15', + '2015eigen16', + '2015eigen17', + '2015eigen19' + ] + +amfs = [] +gains = [] +maxgains = [] +mingains = [] +taus = [] +f_cs = [] +predicts = [] +for ID in identifier: + predict = [] + + print(ID) + amf = np.load('eigen_amf_%s.npy' % ID) + amfs.append(amf) + gain = np.load('eigen_gain_%s.npy' % ID) + gains.append(gain) + print(np.max(gain)) + sinv, sinc = curve_fit(gain_curve_fit, amf, gain, [2, 3]) + # print('tau:', sinv[0]) + taus.append(sinv[0]) + f_cutoff = abs(1 / (2 * np.pi * sinv[0])) + print('f_cutoff:', f_cutoff) + f_cs.append(f_cutoff) + + print('min gain:', np.min(gain)) + print('max gain:', np.max(gain)) + maxgains.append(np.max(gain)) + mingains.append(np.min(gain)) + # predict of gain + for f in amf: + G = np.max(gain) / np.sqrt(1 + (2 * ((np.pi * f * sinv[0]) ** 2))) + predict.append(G) + predicts.append(predict) + +print('max of absolute max gain:', np.max(maxgains)) +print('min of absolute max gain:', np.min(maxgains)) +print('max of absolute min gain:', np.max(mingains)) +print('min of absolute min gain:', np.min(mingains)) +print('absolute max f_c:', np.max(f_cs)) +print('absolute min f_c:', np.min(f_cs)) + +sort = sorted(zip(f_cs, identifier)) +print(sort) +# order of plotting: 2018lepto1, 2018lepto5, 2018lepto76, 2018lepto98, 2019lepto24, 2020lepto06 +# order of f_c: 2019lepto24, 2020lepto06, 2018lepto98, 2018lepto76, 2018lepto1, 2018lepto5 + +fig = plt.figure(figsize=(8.27, 11.69)) +# ax0 = plt.subplot2grid(shape=(3,4), loc=(0,0), colspan = 2) +# ax1 = plt.subplot2grid((3,4), (0,2), colspan = 2) +# ax2 = plt.subplot2grid((3,4), (1,0), colspan = 2) +# ax3 = plt.subplot2grid((3,4), (1,2), colspan = 2) +# ax4 = plt.subplot2grid((3,4), (2,0), colspan = 2) + +ax0 = fig.add_subplot(321) +fig.text(0.05, 0.5, 'gain [Hz/(mV/cm)]', ha='center', va='center', rotation='vertical') +fig.text(0.5, 0.04, 'envelope frequency [Hz]', ha='center', va='center') + +ax0.set_xlim(0.0007, 1.5) +ax0.set_ylim(0.001, 10) +ax0.plot(amfs[1], gains[1], 'o', label='gain') +ax0.plot(amfs[1], predicts[1], label='fit') +ax0.axvline(x=f_cs[1], ymin=0, ymax=5, ls='-', alpha=0.5, label='cutoff frequency') +ax0.set_xscale('log') +ax0.set_yscale('log') +ax0.axes.xaxis.set_ticklabels([]) + +ax1 = fig.add_subplot(322) +ax1.set_xlim(0.0007, 1.5) +ax1.set_ylim(0.001, 10) +ax1.plot(amfs[0], gains[0], 'o', label='gain') +ax1.plot(amfs[0], predicts[0], label='fit') +ax1.axvline(x=f_cs[0], ymin=0, ymax=5, ls='-', alpha=0.5, label='cutoff frequency') +ax1.set_xscale('log') +ax1.set_yscale('log') +ax1.axes.yaxis.set_ticklabels([]) +ax1.axes.xaxis.set_ticklabels([]) + +ax2 = fig.add_subplot(323) +ax2.set_xlim(0.0007, 1.5) +ax2.set_ylim(0.001, 10) +ax2.plot(amfs[4], gains[4], 'o', label='gain') +ax2.plot(amfs[4], predicts[4], label='fit') +ax2.axvline(x=f_cs[4], ymin=0, ymax=5, ls='-', alpha=0.5, label='cutoff frequency') +ax2.set_xscale('log') +ax2.set_yscale('log') +ax2.axes.xaxis.set_ticklabels([]) + +ax3 = fig.add_subplot(324) +ax3.set_xlim(0.0007, 1.5) +ax3.set_ylim(0.001, 10) +ax3.plot(amfs[2], gains[2], 'o', label='gain') +ax3.plot(amfs[2], predicts[2], label='fit') +ax3.axvline(x=f_cs[2], ymin=0, ymax=5, ls='-', alpha=0.5, label='cutoff frequency') +ax3.set_xscale('log') +ax3.set_yscale('log') +ax3.axes.yaxis.set_ticklabels([]) + +ax4 = fig.add_subplot(325) +ax4.set_xlim(0.0007, 1.5) +ax4.set_ylim(0.001, 10) +ax4.plot(amfs[3], gains[3], 'o', label='gain') +ax4.plot(amfs[3], predicts[3], label='fit') +ax4.axvline(x=f_cs[3], ymin=0, ymax=5, ls='-', alpha=0.5, label='cutoff frequency') +ax4.set_xscale('log') +ax4.set_yscale('log') + +# plt.legend(loc = 'lower left') +plt.show() + +# np.save('f_c', f_c) +# np.save('tau', tau) diff --git a/eigenmannia_code/figure_eigen_jar_plot.py b/eigenmannia_code/figure_eigen_jar_plot.py new file mode 100644 index 0000000..68b72e3 --- /dev/null +++ b/eigenmannia_code/figure_eigen_jar_plot.py @@ -0,0 +1,168 @@ +import matplotlib.pyplot as plt +import numpy as np +import pylab +from IPython import embed +from scipy.optimize import curve_fit +from scipy.optimize import curve_fit +from matplotlib.mlab import specgram +import os + +from jar_functions import import_data +from jar_functions import import_amfreq +from jar_functions import sin_response +from jar_functions import mean_noise_cut +from jar_functions import gain_curve_fit + +#plt.rcParams.update({'font.size': 10}) + +def take_second(elem): # function for taking the names out of files + return elem[1] + +identifier = ['2015eigen8', + '2015eigen15', + '2015eigen16', + '2015eigen17', + '2015eigen19' + ] +for ident in identifier: + + times = [] + jars = [] + jms = [] + amfreq = [] + + times1 = [] + jars1 = [] + jms1 = [] + amfreq1 = [] + + amf = [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1] + + data = sorted(np.load('eigen_%s files.npy' %ident), key = take_second) # list with filenames in it + + for i, d in enumerate(data): + dd = list(d) + if dd[1] == '1' or dd[1] == '0.2' or dd[1] == '0.05' or dd[1] == '0.01' or dd[1] == '0.005' or dd[1] == '0.001': + jar = np.load('eigen_%s.npy' %dd) # load data for every file name + jm = jar - np.mean(jar) # low-pass filtering by subtracting mean + + time = np.load('eigen_%s time.npy' %dd) # time file + dt = time[1] - time[0] + + n = int(1/float(d[1])/dt) + cutf = mean_noise_cut(jm, n = n) + cutt = time + if dd[1] == '0.001': + amfreq1.append(dd[1]) + jars1.append(jm - cutf) + jms1.append(jm) + times1.append(time) + if dd[1] not in amfreq: + print(dd) + amfreq.append(dd[1]) + jars.append(jm - cutf) + jms.append(jm) + times.append(time) + else: + #print('1:', dd) + amfreq1.append(dd[1]) + jars1.append(jm - cutf) + jms1.append(jm) + times1.append(time) + if len(jars) != 6: + continue + + ssample = 100000 + + fig = plt.figure(figsize=(8.27, 11.69)) + fig.suptitle('%s' % ident) + fig.text(0.06, 0.5, 'fish frequency [Hz]', ha='center', va='center', rotation='vertical', color='C0') + fig.text(0.97, 0.5, 'stimulus amplitude [mV/cm]', ha='center', va='center', rotation='vertical', color='red') + fig.text(0.5, 0.04, 'time [s]', ha='center', va='center') + + ax0 = fig.add_subplot(611) + print('absolute frequency shift 0.001Hz:', np.max(jars[0]) - np.min(jars[0])) + ax0.plot(times[0], jars[0], zorder=20) + # ax0.set_zorder(1) + ax0.set_ylim(-12, 12) + + lower0 = 0 + upper0 = 2000 + x0 = np.linspace(lower0, upper0, sample) + y0 = (sin_response(np.linspace(lower0, upper0, sample), 0.001, np.pi / 2, .35) + 0.5) + ax0_0 = ax0.twinx() + ax0_0.set_ylim(-0.2, 1.2) + ax0_0.plot(x0, y0, color='red', zorder=1, alpha=0.5) + # ax0_0.set_zorder(2) + + ax1 = fig.add_subplot(612) + print('absolute frequency shift 0.005 Hz:', np.max(jars[1]) - np.min(jars[1])) + ax1.plot(times[1], jars[1]) + ax1.set_ylim(-12, 12) + + lower1 = 0 + upper1 = 400 + x1 = np.linspace(lower1, upper1, sample) + y1 = (sin_response(np.linspace(lower1, upper1, sample), 0.005, np.pi / 2, .35) + 0.5) + ax1_0 = ax1.twinx() + ax1_0.set_ylim(-0.2, 1.2) + ax1_0.plot(x1, y1, color='red', alpha=0.5) + + ax2 = fig.add_subplot(613) + print('absolute frequency shift 0.01 Hz:', np.max(jars[2]) - np.min(jars[2])) + ax2.plot(times[2], jars[2]) + ax2.set_ylim(-12, 12) + + lower2 = 0 + upper2 = 400 + x2 = np.linspace(lower2, upper2, sample) + y2 = (sin_response(np.linspace(lower2, upper2, sample), 0.01, np.pi / 2, 0.35) + 0.5) + ax2_0 = ax2.twinx() + ax2_0.set_ylim(-0.2, 1.2) + ax2_0.plot(x2, y2, color='red', alpha=0.5) + + ax3 = fig.add_subplot(614) + print('absolute frequency shift 0.02 Hz:', np.max(jars[3]) - np.min(jars[3])) + ax3.plot(times[3], jars[3]) + ax3.set_ylim(-12, 12) + + lower3 = 0 + upper3 = 200 + x3 = np.linspace(lower3, upper3, sample) + y3 = (sin_response(np.linspace(lower3, upper3, sample), 0.05, np.pi / 2, 0.35) + 0.5) + ax3_0 = ax3.twinx() + ax3_0.set_ylim(-0.2, 1.2) + ax3_0.plot(x3, y3, color='red', alpha=0.5) + + ax4 = fig.add_subplot(615) + print('absolute frequency shift 0.5 Hz:', np.max(jars[4]) - np.min(jars[4])) + ax4.plot(times[4], jars[4]) + ax4.set_ylim(-12, 12) + + lower4 = 0 + upper4 = 200 + x4 = np.linspace(lower4, upper4, sample) + y4 = (sin_response(np.linspace(lower4, upper4, sample), 0.2, np.pi / 2, 0.35) + 0.5) + ax4_0 = ax4.twinx() + ax4_0.set_ylim(-0.2, 1.2) + ax4_0.plot(x4, y4, color='red', alpha=0.5) + + ax5 = fig.add_subplot(616) + print('absolute frequency shift 1 Hz:', np.max(jars[5]) - np.min(jars[5])) + ax5.plot(times[5], jars[5]) + ax5.set_ylim(-12, 12) + + lower5 = 0 + upper5 = 200 + x5 = np.linspace(lower5, upper5, sample) + y5 = (sin_response(np.linspace(lower5, upper5, sample), 1, np.pi / 2, 0.35) + 0.5) + ax5_0 = ax5.twinx() + ax5_0.plot(x5, y5, color='red', lw=0.5, alpha=0.5) + ax5_0.set_ylim(-0.2, 1.2) + plt.subplots_adjust(left=0.125, + bottom=0.1, + right=0.9, + top=0.9, + wspace=0.1, + hspace=0.35) + plt.show() \ No newline at end of file