This commit is contained in:
xaver 2020-06-30 15:55:49 +02:00
parent c3c92fd42d
commit 77534d6e4a
3 changed files with 44 additions and 14 deletions

View File

@ -1,5 +1,6 @@
import os #compability with windows
from IPython import embed
import numpy as np
def parse_dataset(dataset_name):
assert(os.path.exists(dataset_name)) #see if data exists
@ -57,16 +58,26 @@ def parse_dataset(dataset_name):
def noise_reduce(dataset_name):
def noise_reduce(dataset_name, n):
assert (os.path.exists(dataset_name)) # see if data exists
f = open(dataset_name, 'r') # open data we gave in
lines = f.readlines() # read data
f.close()
n = 10
#len of frequencies is 10 time shorter than before, so worked?
#put in frequencies instead of dataset?
#2nd loop cut frequencies by this function?
cutf = []
for i in np.arange(0, len(dataset_name), n): #dataset_name sollte Frequenzen sein?
mean = np.mean(dataset_name[i:i+n]) #sollte nach i+n weitergehen?
frequencies = []
for i in range(len(lines)):
l = lines[i].strip()
if len(l) > 0 and l[0] is not '#':
temporary = list(map(float, l.split()))
frequencies.append(temporary[1])
for k in np.arange(0, len(frequencies), n): # sollte nach k+n weitergehen?
f = frequencies[k:k+n]
mean = np.mean(f)
cutf.append(mean)
return cutf

View File

@ -1,5 +1,9 @@
import os
import numpy as np
from IPython import embed
from jar_functions import noise_reduce
datasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))]
"""
#second_try scratch
@ -19,6 +23,8 @@ for f in frequency:
# mean_f = np.mean(x) for x in zip(freqeuncies1, frequencies2)
"""
'''
g = [1, 2]
h = [3, 4]
@ -30,4 +36,7 @@ mean1 = np.mean(z, axis=1)
print(mean0)
print(mean1)
'''
for dataset in datasets:
cf = noise_reduce(dataset, 10)
embed()

View File

@ -26,6 +26,7 @@ timespan = 210
for dataset in datasets:
#input of the function
t, f, a, e, d, s= parse_dataset(dataset)
cf = noise_reduce(dataset, n = 10)
'times'
# same for time in both loops
@ -49,12 +50,11 @@ for dataset in datasets:
# interpolation
f1new = np.interp(tnew, t1, f1)
#new array with frequencies of both loops as two lists put together as an array
#new array with frequencies of both loops as two lists put together
frequency = np.array([[f0new], [f1new]])
#making a mean over both loops with the axis 0 (=averaged in y direction, axis=1 would be over x axis)
mf = np.mean(frequency, axis=0).T #.T as transition (1,0) -> (0,1)
#other variant for transition by reshaping in needed dimension
mfreshape = np.reshape(mf, (minimumf, 1)) #as ploting is using the first dimension, number of datapoints has to be in the first
treshape = np.reshape(tnew, (minimumf, 1))
@ -67,18 +67,28 @@ for dataset in datasets:
stimulusf.append(s)
amplitude.append(a)
frequency_mean.append(mfreshape)
time.append(treshape)
frequency_mean.append(mf)
time.append(tnew)
cutfreq = noise_reduce(mfreshape)
embed()
'''
'controll of interpolation'
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(tnew, mf, c = 'r', marker = 'o', ls = 'solid', label = 'new')
ax.plot(t0, f0, c = 'b', marker = '+', ls = '-', label = 'loop_0')
ax.plot(t1, f1, c= 'g', marker = '+', ls = '-', label = 'loop_1')
plt.legend(loc = 'best')
#plt.plot(tnew, mf, marker = 'r-o', label = new, t0, f0, marker = 'b-+', label = loop_0, t1, f1, marker = 'g-+', label = loop_1)
plt.show()
'''
#plotting
'plotting'
'''why does append put in a 3rd dimension? plt.plot(time, frequency_mean) '''
plt.plot(treshape, mfreshape)
plt.plot(tnew, mf)
plt.xlim([-10,200])
#plt.ylim([400, 1000])
plt.xlabel('time [s]')