30.06
This commit is contained in:
		
							parent
							
								
									c3c92fd42d
								
							
						
					
					
						commit
						77534d6e4a
					
				| @ -1,5 +1,6 @@ | ||||
| import os   #compability with windows | ||||
| from IPython import embed | ||||
| import numpy as np | ||||
| 
 | ||||
| def parse_dataset(dataset_name): | ||||
|     assert(os.path.exists(dataset_name))        #see if data exists | ||||
| @ -57,16 +58,26 @@ def parse_dataset(dataset_name): | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| def noise_reduce(dataset_name): | ||||
| def noise_reduce(dataset_name, n): | ||||
|     assert (os.path.exists(dataset_name))  # see if data exists | ||||
|     f = open(dataset_name, 'r')  # open data we gave in | ||||
|     lines = f.readlines()  # read data | ||||
|     f.close() | ||||
| 
 | ||||
|     n = 10 | ||||
|                                                 #len of frequencies is 10 time shorter than before, so worked? | ||||
|                                                 #put in frequencies instead of dataset? | ||||
|                                                 #2nd loop cut frequencies by this function? | ||||
|     cutf = [] | ||||
|     for i in np.arange(0, len(dataset_name), n):    #dataset_name sollte Frequenzen sein? | ||||
|         mean = np.mean(dataset_name[i:i+n])         #sollte nach i+n weitergehen? | ||||
|     frequencies = [] | ||||
|     for i in range(len(lines)): | ||||
|         l = lines[i].strip() | ||||
| 
 | ||||
|         if len(l) > 0 and l[0] is not '#': | ||||
|             temporary = list(map(float, l.split())) | ||||
|             frequencies.append(temporary[1]) | ||||
| 
 | ||||
|     for k in np.arange(0, len(frequencies), n): # sollte nach k+n weitergehen? | ||||
|         f = frequencies[k:k+n] | ||||
|         mean = np.mean(f) | ||||
|         cutf.append(mean) | ||||
| 
 | ||||
|     return cutf | ||||
							
								
								
									
										11
									
								
								scratch.py
									
									
									
									
									
								
							
							
						
						
									
										11
									
								
								scratch.py
									
									
									
									
									
								
							| @ -1,5 +1,9 @@ | ||||
| import os | ||||
| import numpy as np | ||||
| from IPython import embed | ||||
| from jar_functions import noise_reduce | ||||
| 
 | ||||
| datasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))] | ||||
| 
 | ||||
| """ | ||||
| #second_try scratch | ||||
| @ -19,6 +23,8 @@ for f in frequency: | ||||
| 
 | ||||
| # mean_f = np.mean(x) for x in zip(freqeuncies1, frequencies2) | ||||
| """ | ||||
| 
 | ||||
| ''' | ||||
| g = [1, 2] | ||||
| 
 | ||||
| h = [3, 4] | ||||
| @ -30,4 +36,7 @@ mean1 = np.mean(z, axis=1) | ||||
| 
 | ||||
| print(mean0) | ||||
| print(mean1) | ||||
| 
 | ||||
| ''' | ||||
| for dataset in datasets: | ||||
|     cf = noise_reduce(dataset, 10) | ||||
|     embed() | ||||
| @ -26,6 +26,7 @@ timespan = 210 | ||||
| for dataset in datasets: | ||||
|     #input of the function | ||||
|     t, f, a, e, d, s= parse_dataset(dataset) | ||||
|     cf = noise_reduce(dataset, n = 10) | ||||
| 
 | ||||
|     'times' | ||||
|     # same for time in both loops | ||||
| @ -49,12 +50,11 @@ for dataset in datasets: | ||||
|     # interpolation | ||||
|     f1new = np.interp(tnew, t1, f1) | ||||
| 
 | ||||
|     #new array with frequencies of both loops as two lists put together as an array | ||||
|     #new array with frequencies of both loops as two lists put together | ||||
|     frequency = np.array([[f0new], [f1new]]) | ||||
|     #making a mean over both loops with the axis 0 (=averaged in y direction, axis=1 would be over x axis) | ||||
|     mf = np.mean(frequency, axis=0).T           #.T as transition (1,0) -> (0,1) | ||||
| 
 | ||||
| 
 | ||||
|     #other variant for transition by reshaping in needed dimension | ||||
|     mfreshape = np.reshape(mf, (minimumf, 1))           #as ploting is using the first dimension, number of datapoints has to be in the first | ||||
|     treshape = np.reshape(tnew, (minimumf, 1)) | ||||
| @ -67,18 +67,28 @@ for dataset in datasets: | ||||
|     stimulusf.append(s) | ||||
|     amplitude.append(a) | ||||
| 
 | ||||
|     frequency_mean.append(mfreshape) | ||||
|     time.append(treshape) | ||||
| 
 | ||||
|     cutfreq = noise_reduce(mfreshape) | ||||
|     embed() | ||||
|     frequency_mean.append(mf) | ||||
|     time.append(tnew) | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| #plotting | ||||
| ''' | ||||
| 'controll of interpolation' | ||||
| fig=plt.figure() | ||||
| ax=fig.add_subplot(1,1,1) | ||||
| 
 | ||||
| ax.plot(tnew, mf, c = 'r', marker = 'o', ls = 'solid', label = 'new') | ||||
| ax.plot(t0, f0, c = 'b', marker = '+', ls = '-', label = 'loop_0') | ||||
| ax.plot(t1, f1, c= 'g', marker = '+', ls = '-', label = 'loop_1') | ||||
| plt.legend(loc = 'best') | ||||
| #plt.plot(tnew, mf, marker = 'r-o', label = new, t0, f0, marker = 'b-+', label = loop_0, t1, f1, marker = 'g-+', label = loop_1) | ||||
| plt.show() | ||||
| ''' | ||||
| 
 | ||||
| 'plotting' | ||||
| '''why does append put in a 3rd dimension? plt.plot(time, frequency_mean) ''' | ||||
| 
 | ||||
| plt.plot(treshape, mfreshape) | ||||
| plt.plot(tnew, mf) | ||||
| plt.xlim([-10,200]) | ||||
| #plt.ylim([400, 1000]) | ||||
| plt.xlabel('time [s]') | ||||
|  | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user