This commit is contained in:
xaver 2020-08-17 15:54:19 +02:00
parent 2841457261
commit 5c17008909
3 changed files with 55 additions and 36 deletions

View File

@ -102,8 +102,8 @@ def mean_noise_cut(frequencies, time, n):
cutf = []
cutt = []
for k in np.arange(0, len(frequencies), n):
t = time[k]
f = np.mean(frequencies[k:k+n])
t = time[k]
cutf.append(f)
cutt.append(t)
return cutf, cutt

View File

@ -6,11 +6,14 @@ from IPython import embed
from scipy.optimize import curve_fit
from jar_functions import sin_response
def take_second(elem):
def take_second(elem): # function for taking the names out of files
return elem[1]
predict = []
rootmeansquare = []
threshold = []
gain = []
mgain = []
phaseshift = []
@ -21,35 +24,38 @@ amf = [0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1]
currf = None
idxlist = []
data = sorted(np.load('files.npy'), key = take_second)
data = sorted(np.load('files.npy'), key = take_second) # list with filenames in it
for i, d in enumerate(data):
dd = list(d)
jar = np.load('%s.npy' %dd)
jm = jar - np.mean(jar)
jar = np.load('%s.npy' %dd) # load data for every file name
jm = jar - np.mean(jar) # low-pass filtering by subtracting mean
print(dd)
time = np.load('time: %s.npy' %dd)
time = np.load('%s time.npy' %dd) # time file
b, a = signal.butter(4, (float(d[1]) / 2) / 10000, 'high', analog=True)
b, a = signal.butter(4, (float(d[1]) / 2) / 10000, 'high', analog=True) # high pass filtering so our fit gets a bit better
y = signal.filtfilt(b, a, jm)
#plt.plot(time, y)
#plt.plot(time, jar)
sinv, sinc = curve_fit(sin_response, time, y, [float(d[1]), 2, 0.5])
sinv, sinc = curve_fit(sin_response, time, y, [float(d[1]), 2, 0.5]) # fitting
print('frequency, phaseshift, amplitude:', sinv)
plt.show()
p = np.sqrt(sinv[1]**2)
A = np.sqrt(sinv[2] ** 2)
f = float(d[1])
phaseshift.append(p)
gain.append(A)
amfreq.append(f)
phaseshift.append(np.sqrt(sinv[1]**2))
gain.append(np.sqrt(sinv[2]**2))
amfreq.append(d[1])
# root mean square
Rs = []
for ix, t in enumerate(time):
R = (jm[ix] - sin_response(t, float(d[1]), np.sqrt(sinv[1]**2), np.sqrt(sinv[2]**2)))**2
Rs.append(R)
RMS = np.sqrt(np.mean((jm - sin_response(time, sinv[0], sinv[1], sinv[2]))**2))
rootmeansquare.append(RMS)
thresh = A / np.sqrt(2)
threshold.append(thresh)
sigma = sum(Rs)
rms = np.sqrt((1/len(time)) * sigma)
#plt.plot(time, sin_response(time, *sinv), label='fit: f=%f, p=%.2f, A=%.2f' % tuple(sinv))
#mean over same amfreqs for phase and gain
@ -80,6 +86,7 @@ meanedp = np.mean(meanp)
mgain.append(meanedf)
mphaseshift.append(meanedp)
# predict of gain
for f in amf:
G = np.max(mgain) / np.sqrt(1 + (2*((np.pi*f*3.14)**2)))
predict.append(G)
@ -89,16 +96,24 @@ for f in amf:
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(amf, mgain, 'o')
ax.plot(amf, predict)
#ax.plot(amf, predict)
ax.set_yscale('log')
ax.set_xscale('log')
ax.set_title('2018lepto98')
ax.set_title('%s' % data[0][0])
ax.set_ylabel('gain [Hz/(mV/cm)]')
ax.set_xlabel('AM-frequency [Hz]')
#plt.savefig('2018lepto98_gain')
#plt.savefig('%s gain' % data[0][0])
pylab.show()
plt.plot(threshold, label = 'threshold')
plt.plot(rootmeansquare, label = 'RMS')
plt.legend()
plt.show()
embed()
#phase in degree
# Q10 / conductivity
# AM-frequency / envelope-frequency scale title?
# bevor fit noch filtern mit 15Hz damit AM-Modulation rausgefiltert wird und nur noch envelope übrig bleibt.
# Dazu running average mit n wobei n über samplingrate und delta f bestimmt wird
# samplingrate über overlap muss dabei aber größer sein als samplingrate die noch übrig bleibt wenn ich mit delta f frequency gefiltert hab

View File

@ -21,23 +21,22 @@ from jar_functions import average
from jar_functions import import_data
from jar_functions import import_amfreq
base_path = 'D:\\jar_project\\JAR\\sin\\2018lepto98'
base_path = 'D:\\jar_project\\JAR\\sin\\2020lepto16'
#nicht: -5Hz delta f, 19-aa, 22-ae, 22-ad (?)
#dat = glob.glob('D:\\jar_project\\JAR\\2020*\\beats-eod.dat')
#infodat = glob.glob('D:\\jar_project\\JAR\\2020*\\info.dat')
datasets = ['2020-07-21-ak',
'2020-07-21-al',
'2020-07-21-am',
'2020-07-21-an',
'2020-07-21-ao',
'2020-07-22-ai',
'2020-07-22-aj',
'2020-07-22-ak',
'2020-07-22-al',
'2020-07-22-am',
]
datasets = ['2020-08-04-ab',
'2020-08-04-ac',
'2020-08-04-ad',
'2020-08-04-ae',
'2020-08-04-af',
'2020-08-05-ab',
'2020-08-05-ac',
'2020-08-05-ad',
'2020-08-05-ae',
'2020-08-05-af']
time_all = []
freq_all = []
@ -106,11 +105,16 @@ for idx, dataset in enumerate(datasets):
freq4 = freqs[ix0:ix1]
jar4 = freq4[np.argmax(spec4, axis=0)] # all freqs at max specs over axis 0
jar = jar4 / 4
jm = jar4 - np.mean(jar4)
jm = jar4 - np.mean(jar4) # data we take
cut_times = times[:len(jar4)]
np.save('time: %s.npy' % file_name, cut_times)
np.save('%s.npy' % file_name, jar4)
np.save('%s time' % file_name, cut_times)
np.save('%s' % file_name, jar4)
cutf, cutt = mean_noise_cut(jar4, cut_times, 40000 * (1/15))
plt.plot(cutt, cutf)
plt.show()
embed()
#plt.plot(cut_times, jm, '-k')