This commit is contained in:
xaver 2020-07-03 18:14:30 +02:00
parent 9a6d29073e
commit 4022fff994
2 changed files with 65 additions and 51 deletions

View File

@ -63,14 +63,14 @@ def mean_noise_cut(frequencies, time, n):
f = np.mean(frequencies[k:k+n]) f = np.mean(frequencies[k:k+n])
cutf.append(f) cutf.append(f)
cutt.append(t) cutt.append(t)
return cutf, cutt return cutf, cutt
def step_response(t, a1, a2, tau1, tau2): def step_response(t, a1, a2, tau1, tau2):
r_step = a1*(1 - np.exp(-t/tau1)) + a2*(1- np.exp(-t/tau2)) r_step = (a1*(1 - np.exp(-t/tau1))) + (a2*(1 - np.exp(-t/tau2)))
r_step[t<0] = 0
return r_step return r_step
# plotten mit manual values for a1, ...
# auch mal a1 oder a2 auf Null setzen.
def base_eod(frequencies, time, onset_point): def base_eod(frequencies, time, onset_point):
@ -82,6 +82,7 @@ def base_eod(frequencies, time, onset_point):
base_eod.append(base) base_eod.append(base)
return base_eod return base_eod
def JAR_eod(frequencies, time, offset_point): def JAR_eod(frequencies, time, offset_point):
jar_eod = [] jar_eod = []
@ -90,4 +91,35 @@ def JAR_eod(frequencies, time, offset_point):
jar = np.mean(frequencies[(time >= offset_start) & (time < offset_point)]) jar = np.mean(frequencies[(time >= offset_start) & (time < offset_point)])
jar_eod.append(jar) jar_eod.append(jar)
return jar_eod return jar_eod
def mean_loops(start, stop, timespan, frequencies, time):
minimumt = min(len(time[0]), len(time[1]))
# new time with wished timespan because it varies for different loops
tnew = np.arange(start, stop, timespan / minimumt) # 3rd input is stepspacing:
# in case complete measuring time devided by total number of datapoints
# interpolation
f0 = np.interp(tnew, time[0], frequencies[0])
f1 = np.interp(tnew, time[1], frequencies[1])
#new array with frequencies of both loops as two lists put together
frequency = np.array([f0, f1])
#making a mean over both loops with the axis 0 (=averaged in y direction, axis=1 would be over x axis)
mf = np.mean(frequency, axis=0)
return mf, tnew
def norm_function(cf_arr, ct_arr, onset_point, offset_point):
onset_end = onset_point - 10
offset_start = offset_point - 10
base = np.mean(cf_arr[(ct_arr >= onset_end) & (ct_arr < onset_point)])
ground = cf_arr - base
jar = np.mean(cf_arr[(ct_arr >= offset_start) & (ct_arr < offset_point)])
norm = ground / jar
return norm

View File

@ -4,11 +4,14 @@ import glob
import IPython import IPython
import numpy as np import numpy as np
from IPython import embed from IPython import embed
from scipy.optimize import curve_fit
from jar_functions import parse_dataset from jar_functions import parse_dataset
from jar_functions import mean_noise_cut from jar_functions import mean_noise_cut
from jar_functions import step_response from jar_functions import step_response
from jar_functions import JAR_eod from jar_functions import JAR_eod
from jar_functions import base_eod from jar_functions import base_eod
from jar_functions import mean_loops
from jar_functions import norm_function
datasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))] datasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))]
@ -27,58 +30,30 @@ timespan = 210
for dataset in datasets: for dataset in datasets:
#input of the function #input of the function
t, f, a, e, d, s= parse_dataset(dataset) t, f, a, e, d, s = parse_dataset(dataset)
mf , tnew = mean_loops(start, stop, timespan, f, t)
minimumt = min(len(t[0]), len(t[1])) embed()
# new time with wished timespan because it varies for different loops
tnew = np.arange(start, stop, timespan / minimumt) # 3rd input is stepspacing:
# in case complete measuring time devided by total number of datapoints
# interpolation
f0 = np.interp(tnew, t[0], f[0])
f1 = np.interp(tnew, t[1], f[1])
#new array with frequencies of both loops as two lists put together
frequency = np.array([f0, f1])
#making a mean over both loops with the axis 0 (=averaged in y direction, axis=1 would be over x axis)
mf = np.mean(frequency, axis=0)
#appending data
eodf.append(e)
deltaf.append(d)
stimulusf.append(s)
amplitude.append(a)
frequency_mean.append(mf)
time.append(tnew)
"""
for a in [0, 1, 2]:
for b in [0, 1, 2]:
r_step = step_response(t = ct_arr, a1 = a, a2 = b, tau1 = 30, tau2 = 60)
"""
for i in range(len(frequency_mean)):
for n in [100, 500, 1000]:
cf, ct = mean_noise_cut(frequency_mean[i], time[i], n=n)
for i in range(len(mf)):
for n in [500, 1000, 1500]:
cf, ct = mean_noise_cut(mf[i], time[i], n=n)
ct_arr = np.array(ct)
cf_arr = np.array(cf) cf_arr = np.array(cf)
ct_arr = np.array(ct)
base = base_eod(cf_arr, ct_arr, onset_point = 0) norm = norm_function(cf_arr, ct_arr, onset_point = 0, offset_point = 100)
ground = cf_arr - base
jar = JAR_eod(ground, ct_arr, offset_point = 100)
norm = ground / jar
plt.plot(ct_arr, norm, label='n=%d' % n) plt.plot(ct_arr, norm, label='n=%d' % n)
#r_step = step_response(t=ct_arr, a1=0.58, a2=0.47, tau1=11.7, tau2=60)
#plt.plot(ct_arr[ct_arr < 100], r_step[ct_arr < 100], label='fit: n=%d' % n)
for n in [1480]: step_values, step_cov = curve_fit(step_response, ct_arr[ct_arr < 100], norm [ct_arr < 100])
cf, ct = mean_noise_cut(frequency_mean[i], time[i], n=n)
ct_arr = np.array(ct) plt.plot(ct_arr [ct_arr < 100], step_response(ct_arr, *step_values)[ct_arr < 100], 'r-', label='fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(step_values))
cf_arr = np.array(cf) print(step_values)
r_step = step_response(t=ct_arr + 10, a1=0.55, a2=0.89, tau1=11.2, tau2= 280) const_line = plt.axhline(y=0.632)
plt.plot(r_step, label='fit: n=%d' % n)
'plotting' 'plotting'
plt.xlim([-10,220]) plt.xlim([-10,220])
@ -87,7 +62,14 @@ plt.xlabel('time [s]')
plt.ylabel('rel. JAR magnitude') plt.ylabel('rel. JAR magnitude')
#plt.title('fit_function(a1=0)') #plt.title('fit_function(a1=0)')
#plt.savefig('fit_function(a1=0)') #plt.savefig('fit_function(a1=0)')
plt.legend() plt.legend(loc = 'lower right')
plt.show() plt.show()
embed() embed()
# Zeitkonstante: von sec. 0 bis 63%? relative JAR
# noch mehr in funktionen reinhauen (quasi nur noch plotting und funktionen einlesen)
# zeitkonstanten nach groß und klein sortieren
# onset dauer auslesen
# ID aus info.dat auslesen
# alle daten einlesen durch große for schleife (auch average über alle fische?)
# für einzelne fische fit kontrollieren