03.07
This commit is contained in:
parent
9a6d29073e
commit
4022fff994
@ -63,14 +63,14 @@ def mean_noise_cut(frequencies, time, n):
|
|||||||
f = np.mean(frequencies[k:k+n])
|
f = np.mean(frequencies[k:k+n])
|
||||||
cutf.append(f)
|
cutf.append(f)
|
||||||
cutt.append(t)
|
cutt.append(t)
|
||||||
|
|
||||||
return cutf, cutt
|
return cutf, cutt
|
||||||
|
|
||||||
|
|
||||||
def step_response(t, a1, a2, tau1, tau2):
|
def step_response(t, a1, a2, tau1, tau2):
|
||||||
r_step = a1*(1 - np.exp(-t/tau1)) + a2*(1- np.exp(-t/tau2))
|
r_step = (a1*(1 - np.exp(-t/tau1))) + (a2*(1 - np.exp(-t/tau2)))
|
||||||
|
r_step[t<0] = 0
|
||||||
return r_step
|
return r_step
|
||||||
# plotten mit manual values for a1, ...
|
|
||||||
# auch mal a1 oder a2 auf Null setzen.
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def base_eod(frequencies, time, onset_point):
|
def base_eod(frequencies, time, onset_point):
|
||||||
@ -82,6 +82,7 @@ def base_eod(frequencies, time, onset_point):
|
|||||||
base_eod.append(base)
|
base_eod.append(base)
|
||||||
return base_eod
|
return base_eod
|
||||||
|
|
||||||
|
|
||||||
def JAR_eod(frequencies, time, offset_point):
|
def JAR_eod(frequencies, time, offset_point):
|
||||||
jar_eod = []
|
jar_eod = []
|
||||||
|
|
||||||
@ -90,4 +91,35 @@ def JAR_eod(frequencies, time, offset_point):
|
|||||||
jar = np.mean(frequencies[(time >= offset_start) & (time < offset_point)])
|
jar = np.mean(frequencies[(time >= offset_start) & (time < offset_point)])
|
||||||
jar_eod.append(jar)
|
jar_eod.append(jar)
|
||||||
|
|
||||||
return jar_eod
|
return jar_eod
|
||||||
|
|
||||||
|
|
||||||
|
def mean_loops(start, stop, timespan, frequencies, time):
|
||||||
|
minimumt = min(len(time[0]), len(time[1]))
|
||||||
|
# new time with wished timespan because it varies for different loops
|
||||||
|
tnew = np.arange(start, stop, timespan / minimumt) # 3rd input is stepspacing:
|
||||||
|
# in case complete measuring time devided by total number of datapoints
|
||||||
|
# interpolation
|
||||||
|
f0 = np.interp(tnew, time[0], frequencies[0])
|
||||||
|
f1 = np.interp(tnew, time[1], frequencies[1])
|
||||||
|
|
||||||
|
#new array with frequencies of both loops as two lists put together
|
||||||
|
frequency = np.array([f0, f1])
|
||||||
|
|
||||||
|
#making a mean over both loops with the axis 0 (=averaged in y direction, axis=1 would be over x axis)
|
||||||
|
mf = np.mean(frequency, axis=0)
|
||||||
|
return mf, tnew
|
||||||
|
|
||||||
|
|
||||||
|
def norm_function(cf_arr, ct_arr, onset_point, offset_point):
|
||||||
|
onset_end = onset_point - 10
|
||||||
|
offset_start = offset_point - 10
|
||||||
|
|
||||||
|
base = np.mean(cf_arr[(ct_arr >= onset_end) & (ct_arr < onset_point)])
|
||||||
|
|
||||||
|
ground = cf_arr - base
|
||||||
|
|
||||||
|
jar = np.mean(cf_arr[(ct_arr >= offset_start) & (ct_arr < offset_point)])
|
||||||
|
|
||||||
|
norm = ground / jar
|
||||||
|
return norm
|
@ -4,11 +4,14 @@ import glob
|
|||||||
import IPython
|
import IPython
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from IPython import embed
|
from IPython import embed
|
||||||
|
from scipy.optimize import curve_fit
|
||||||
from jar_functions import parse_dataset
|
from jar_functions import parse_dataset
|
||||||
from jar_functions import mean_noise_cut
|
from jar_functions import mean_noise_cut
|
||||||
from jar_functions import step_response
|
from jar_functions import step_response
|
||||||
from jar_functions import JAR_eod
|
from jar_functions import JAR_eod
|
||||||
from jar_functions import base_eod
|
from jar_functions import base_eod
|
||||||
|
from jar_functions import mean_loops
|
||||||
|
from jar_functions import norm_function
|
||||||
|
|
||||||
|
|
||||||
datasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))]
|
datasets = [(os.path.join('D:\\jar_project\\JAR\\2020-06-22-ac\\beats-eod.dat'))]
|
||||||
@ -27,58 +30,30 @@ timespan = 210
|
|||||||
|
|
||||||
for dataset in datasets:
|
for dataset in datasets:
|
||||||
#input of the function
|
#input of the function
|
||||||
t, f, a, e, d, s= parse_dataset(dataset)
|
t, f, a, e, d, s = parse_dataset(dataset)
|
||||||
|
mf , tnew = mean_loops(start, stop, timespan, f, t)
|
||||||
minimumt = min(len(t[0]), len(t[1]))
|
embed()
|
||||||
# new time with wished timespan because it varies for different loops
|
|
||||||
tnew = np.arange(start, stop, timespan / minimumt) # 3rd input is stepspacing:
|
|
||||||
# in case complete measuring time devided by total number of datapoints
|
|
||||||
# interpolation
|
|
||||||
f0 = np.interp(tnew, t[0], f[0])
|
|
||||||
f1 = np.interp(tnew, t[1], f[1])
|
|
||||||
|
|
||||||
#new array with frequencies of both loops as two lists put together
|
|
||||||
frequency = np.array([f0, f1])
|
|
||||||
|
|
||||||
#making a mean over both loops with the axis 0 (=averaged in y direction, axis=1 would be over x axis)
|
|
||||||
mf = np.mean(frequency, axis=0)
|
|
||||||
|
|
||||||
#appending data
|
|
||||||
eodf.append(e)
|
|
||||||
deltaf.append(d)
|
|
||||||
stimulusf.append(s)
|
|
||||||
amplitude.append(a)
|
|
||||||
frequency_mean.append(mf)
|
|
||||||
time.append(tnew)
|
|
||||||
|
|
||||||
"""
|
|
||||||
for a in [0, 1, 2]:
|
|
||||||
for b in [0, 1, 2]:
|
|
||||||
r_step = step_response(t = ct_arr, a1 = a, a2 = b, tau1 = 30, tau2 = 60)
|
|
||||||
"""
|
|
||||||
|
|
||||||
for i in range(len(frequency_mean)):
|
|
||||||
for n in [100, 500, 1000]:
|
|
||||||
cf, ct = mean_noise_cut(frequency_mean[i], time[i], n=n)
|
|
||||||
|
|
||||||
|
for i in range(len(mf)):
|
||||||
|
for n in [500, 1000, 1500]:
|
||||||
|
cf, ct = mean_noise_cut(mf[i], time[i], n=n)
|
||||||
|
|
||||||
ct_arr = np.array(ct)
|
|
||||||
cf_arr = np.array(cf)
|
cf_arr = np.array(cf)
|
||||||
|
ct_arr = np.array(ct)
|
||||||
|
|
||||||
base = base_eod(cf_arr, ct_arr, onset_point = 0)
|
norm = norm_function(cf_arr, ct_arr, onset_point = 0, offset_point = 100)
|
||||||
ground = cf_arr - base
|
|
||||||
jar = JAR_eod(ground, ct_arr, offset_point = 100)
|
|
||||||
norm = ground / jar
|
|
||||||
|
|
||||||
plt.plot(ct_arr, norm, label='n=%d' % n)
|
plt.plot(ct_arr, norm, label='n=%d' % n)
|
||||||
|
|
||||||
|
#r_step = step_response(t=ct_arr, a1=0.58, a2=0.47, tau1=11.7, tau2=60)
|
||||||
|
|
||||||
|
#plt.plot(ct_arr[ct_arr < 100], r_step[ct_arr < 100], label='fit: n=%d' % n)
|
||||||
|
|
||||||
for n in [1480]:
|
step_values, step_cov = curve_fit(step_response, ct_arr[ct_arr < 100], norm [ct_arr < 100])
|
||||||
cf, ct = mean_noise_cut(frequency_mean[i], time[i], n=n)
|
|
||||||
ct_arr = np.array(ct)
|
plt.plot(ct_arr [ct_arr < 100], step_response(ct_arr, *step_values)[ct_arr < 100], 'r-', label='fit: a1=%.2f, a2=%.2f, tau1=%.2f, tau2=%.2f' % tuple(step_values))
|
||||||
cf_arr = np.array(cf)
|
print(step_values)
|
||||||
r_step = step_response(t=ct_arr + 10, a1=0.55, a2=0.89, tau1=11.2, tau2= 280)
|
const_line = plt.axhline(y=0.632)
|
||||||
plt.plot(r_step, label='fit: n=%d' % n)
|
|
||||||
|
|
||||||
'plotting'
|
'plotting'
|
||||||
plt.xlim([-10,220])
|
plt.xlim([-10,220])
|
||||||
@ -87,7 +62,14 @@ plt.xlabel('time [s]')
|
|||||||
plt.ylabel('rel. JAR magnitude')
|
plt.ylabel('rel. JAR magnitude')
|
||||||
#plt.title('fit_function(a1=0)')
|
#plt.title('fit_function(a1=0)')
|
||||||
#plt.savefig('fit_function(a1=0)')
|
#plt.savefig('fit_function(a1=0)')
|
||||||
plt.legend()
|
plt.legend(loc = 'lower right')
|
||||||
plt.show()
|
plt.show()
|
||||||
embed()
|
embed()
|
||||||
# Zeitkonstante: von sec. 0 bis 63%? relative JAR
|
|
||||||
|
# noch mehr in funktionen reinhauen (quasi nur noch plotting und funktionen einlesen)
|
||||||
|
# zeitkonstanten nach groß und klein sortieren
|
||||||
|
# onset dauer auslesen
|
||||||
|
# ID aus info.dat auslesen
|
||||||
|
# alle daten einlesen durch große for schleife (auch average über alle fische?)
|
||||||
|
# für einzelne fische fit kontrollieren
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user