05.08
This commit is contained in:
parent
47e386000f
commit
183c95cb8b
@ -44,5 +44,5 @@ for d in range(int(len(data)/10)):
|
|||||||
g = [1.2917623576698833, -5.479055166593157, -2.689492238578325, -0.11604244418416806, -0.05353823781665627]
|
g = [1.2917623576698833, -5.479055166593157, -2.689492238578325, -0.11604244418416806, -0.05353823781665627]
|
||||||
a = [0.2, 0.002, 0.02, 0.5, 1.0]
|
a = [0.2, 0.002, 0.02, 0.5, 1.0]
|
||||||
|
|
||||||
plt.plot(a, g)
|
np.save('g.npy', g)
|
||||||
plt.show()
|
print(np.load('g.npy'))
|
||||||
|
@ -0,0 +1,28 @@
|
|||||||
|
from scipy import signal
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
from IPython import embed
|
||||||
|
from scipy.optimize import curve_fit
|
||||||
|
from jar_functions import sin_response
|
||||||
|
|
||||||
|
data = np.load('files.npy')
|
||||||
|
for d in data:
|
||||||
|
dd = list(d)
|
||||||
|
jar = np.load('%s.npy' %dd)
|
||||||
|
time = np.load('time: %s.npy' %dd)
|
||||||
|
|
||||||
|
b, a = signal.butter(4, (float(d[1]) / 2) / 10000, 'high', analog=True)
|
||||||
|
y = signal.filtfilt(b, a, jar - np.mean(jar))
|
||||||
|
plt.plot(time, y)
|
||||||
|
#plt.plot(time, jar)
|
||||||
|
|
||||||
|
sinv, sinc = curve_fit(sin_response, time, y, [float(d[1]), 2, 0.5])
|
||||||
|
print('frequency, phaseshift, amplitude:', sinv)
|
||||||
|
|
||||||
|
plt.plot(time, sin_response(time, *sinv), label='fit: f=%f, p=%.2f, A=%.2f' % tuple(sinv))
|
||||||
|
|
||||||
|
# plt.legend()
|
||||||
|
plt.show()
|
||||||
|
embed()
|
||||||
|
|
||||||
|
#betrag von A
|
@ -47,19 +47,13 @@ freq_all = []
|
|||||||
|
|
||||||
amfrequencies = []
|
amfrequencies = []
|
||||||
gains = []
|
gains = []
|
||||||
|
files = []
|
||||||
|
|
||||||
|
|
||||||
ID = []
|
ID = []
|
||||||
col = ['dimgrey', 'grey', 'darkgrey', 'silver', 'lightgrey', 'gainsboro', 'whitesmoke']
|
col = ['dimgrey', 'grey', 'darkgrey', 'silver', 'lightgrey', 'gainsboro', 'whitesmoke']
|
||||||
labels = zip(ID, datasets)
|
labels = zip(ID, datasets)
|
||||||
|
|
||||||
for infodataset in datasets:
|
|
||||||
infodataset = os.path.join(base_path, infodataset, 'info.dat')
|
|
||||||
|
|
||||||
i = parse_infodataset(infodataset)
|
|
||||||
identifier = i[0]
|
|
||||||
if not identifier[1:-2] in ID:
|
|
||||||
ID.append(identifier[1:-2])
|
|
||||||
|
|
||||||
|
|
||||||
for idx, dataset in enumerate(datasets):
|
for idx, dataset in enumerate(datasets):
|
||||||
datapath = os.path.join(base_path, dataset, '%s.nix' % dataset)
|
datapath = os.path.join(base_path, dataset, '%s.nix' % dataset)
|
||||||
@ -71,16 +65,26 @@ for idx, dataset in enumerate(datasets):
|
|||||||
nfft = 2**17
|
nfft = 2**17
|
||||||
|
|
||||||
for d, dat in enumerate(data):
|
for d, dat in enumerate(data):
|
||||||
amfreq = float(import_amfreq(datapath))
|
file_name = []
|
||||||
|
|
||||||
|
|
||||||
|
for infodataset in datasets:
|
||||||
|
infodataset = os.path.join(base_path, infodataset, 'info.dat')
|
||||||
|
|
||||||
|
i = parse_infodataset(infodataset)
|
||||||
|
identifier = i[0]
|
||||||
|
if not identifier[1:-2] in ID:
|
||||||
|
ID.append(identifier[1:-2])
|
||||||
|
file_name.append(ID[0])
|
||||||
|
|
||||||
|
amfreq = import_amfreq(datapath)
|
||||||
print(amfreq)
|
print(amfreq)
|
||||||
amfrequencies.append(amfreq)
|
file_name.append(str(amfreq))
|
||||||
|
|
||||||
file_name = []
|
file_name.append(str(d))
|
||||||
file_name.append(ID)
|
files.append(file_name)
|
||||||
file_name.append(amfreq)
|
|
||||||
file_name.append(d)
|
|
||||||
|
|
||||||
spec, freqs, times = specgram(dat, Fs=1/dt, detrend='mean', NFFT=nfft, noverlap=nfft*0.6)
|
spec, freqs, times = specgram(dat, Fs=1/dt, detrend='mean', NFFT=nfft, noverlap=nfft*0.95)
|
||||||
|
|
||||||
dbspec = 10.0*np.log10(spec) # in dB
|
dbspec = 10.0*np.log10(spec) # in dB
|
||||||
power = dbspec[:, 50]
|
power = dbspec[:, 50]
|
||||||
@ -106,30 +110,21 @@ for idx, dataset in enumerate(datasets):
|
|||||||
jm = jar4 - np.mean(jar4)
|
jm = jar4 - np.mean(jar4)
|
||||||
|
|
||||||
cut_times = times[:len(jar4)]
|
cut_times = times[:len(jar4)]
|
||||||
#np.save('%s.npy' % file_name, jar4)
|
np.save('time: %s.npy' % file_name, cut_times)
|
||||||
|
np.save('%s.npy' % file_name, jar4)
|
||||||
|
|
||||||
plt.plot(cut_times, jm, '-k')
|
plt.plot(cut_times, jm, '-k')
|
||||||
|
|
||||||
cf, ct = mean_noise_cut(jar4, cut_times, n = int(round(len(jar4)/((times[-1] - times [0]) * amfreq))))
|
#cf, ct = mean_noise_cut(jar4, cut_times, n = int(round(len(jar4)/((times[-1] - times [0]) * amfreq))))
|
||||||
|
|
||||||
#plt.plot(ct, cf, '-k')
|
#plt.plot(ct, cf, '-k')
|
||||||
|
|
||||||
#plt.imshow(spec4, cmap='jet', origin='lower', extent=(times[0], times[-1], lim0, lim1), aspect='auto', vmin=-80, vmax=-10)
|
#plt.imshow(spec4, cmap='jet', origin='lower', extent=(times[0], times[-1], lim0, lim1), aspect='auto', vmin=-80, vmax=-10)
|
||||||
#np.save( , spec4)
|
|
||||||
|
|
||||||
embed()
|
|
||||||
b, a = signal.butter(4, 0.01 / 10000, 'high', analog=True)
|
|
||||||
y = signal.filtfilt(b, a, jm)
|
|
||||||
sinv, sinc = curve_fit(sin_response, cut_times, jm, [amfreq, 2, 0.5])
|
|
||||||
print('frequency, phaseshift, amplitude:', sinv)
|
|
||||||
gains.append(sinv[2])
|
|
||||||
|
|
||||||
plt.plot(cut_times, sin_response(cut_times, *sinv), label='fit: f=%f, p=%.2f, A=%.2f' % tuple(sinv))
|
|
||||||
|
|
||||||
#plt.legend()
|
#plt.legend()
|
||||||
#plt.ylim(lim0, lim1)
|
#plt.ylim(lim0, lim1)
|
||||||
plt.legend()
|
#plt.legend()
|
||||||
plt.show()
|
#plt.show()
|
||||||
|
np.save('files.npy', files)
|
||||||
|
#embed()
|
||||||
|
|
||||||
#print(np.load('%s.npy' % file_name))
|
# running average over on AM-period?
|
||||||
embed()
|
|
Loading…
Reference in New Issue
Block a user