10.09
This commit is contained in:
parent
da1bc387b4
commit
03dc051388
@ -28,48 +28,87 @@ for ID in identifier:
|
|||||||
dur = int(duration[0][0:2])
|
dur = int(duration[0][0:2])
|
||||||
print(df)
|
print(df)
|
||||||
|
|
||||||
# time, eod = nh.read_eod(datapath, duration = 2000) # anstatt dem import data mit tag manual jar - dann sollte onset wirklich bei 10 sec sein
|
# base with nh.read_eod
|
||||||
data, pre_dat, dt = import_data_eigen(datapath)
|
time, eod = nh.read_eod(datapath, duration = 2000) # anstatt dem import data mit tag manual jar - dann sollte onset wirklich bei 10 sec sein
|
||||||
|
|
||||||
|
zeropoints = get_time_zeros(time, eod, threshold=np.max(eod) * 0.1)
|
||||||
|
|
||||||
|
frequencies = 1 / np.diff(zeropoints)
|
||||||
|
|
||||||
|
window = np.ones(101) / 101
|
||||||
|
freq = np.convolve(frequencies, window, mode='same')
|
||||||
|
|
||||||
|
data, pre_data, dt = import_data_eigen(datapath)
|
||||||
|
|
||||||
|
# data
|
||||||
nfft = 2**17
|
nfft = 2**17
|
||||||
spec, freqs, times = specgram(data[0], Fs=1 / dt, detrend='mean', NFFT=nfft, noverlap=nfft * 0.95)
|
spec_0, freqs_0, times_0 = specgram(data[0], Fs=1 / dt, detrend='mean', NFFT=nfft, noverlap=nfft * 0.95)
|
||||||
dbspec = 10.0 * np.log10(spec) # in dB
|
dbspec_0 = 10.0 * np.log10(spec_0) # in dB
|
||||||
power = dbspec[:, 50]
|
power_0 = dbspec_0[:, 25]
|
||||||
|
|
||||||
fish_p = power[(freqs > 200) & (freqs < 1000)]
|
fish_p_0 = power_0[(freqs_0 > 200) & (freqs_0 < 1000)]
|
||||||
fish_f = freqs[(freqs > 200) & (freqs < 1000)]
|
fish_f_0 = freqs_0[(freqs_0 > 200) & (freqs_0 < 1000)]
|
||||||
|
|
||||||
index = np.argmax(fish_p)
|
index_0 = np.argmax(fish_p_0)
|
||||||
eodf = fish_f[index]
|
eodf_0 = fish_f_0[index_0]
|
||||||
eodf4 = eodf * 4
|
eodf4_0 = eodf_0 * 4
|
||||||
|
|
||||||
lim0 = eodf4-20
|
lim0_0 = eodf4_0-20
|
||||||
lim1 = eodf4+20
|
lim1_0 = eodf4_0+20
|
||||||
|
|
||||||
df = freqs[1] - freqs[0]
|
df_0= freqs_0[1] - freqs_0[0]
|
||||||
ix0 = int(np.floor(lim0/df)) # back to index
|
ix0_0 = int(np.floor(lim0_0/df_0)) # back to index
|
||||||
ix1 = int(np.ceil(lim1/df)) # back to index
|
ix1_0 = int(np.ceil(lim1_0/df_0)) # back to index
|
||||||
spec4 = dbspec[ix0:ix1, :]
|
spec4_0= dbspec_0[ix0_0:ix1_0, :]
|
||||||
freq4 = freqs[ix0:ix1]
|
freq4_0 = freqs_0[ix0_0:ix1_0]
|
||||||
jar4 = freq4[np.argmax(spec4, axis=0)] # all freqs at max specs over axis 0
|
jar4 = freq4_0[np.argmax(spec4_0, axis=0)] # all freqs at max specs over axis 0
|
||||||
jar = jar4 / 4
|
|
||||||
jm = jar4 - np.mean(jar4) # data we take
|
jm = jar4 - np.mean(jar4) # data we take
|
||||||
cut_times = times[:len(jar4)]
|
cut_time_jar = times_0[:len(jar4)]
|
||||||
|
|
||||||
|
#plt.imshow(spec4_0, cmap='jet', origin='lower', extent=(times[0], times[-1], lim0, lim1), aspect='auto', vmin=-80, vmax=-10)
|
||||||
|
#plt.plot(cut_time_jar, jar4)
|
||||||
|
#plt.ylim(lim0_0, lim1_0)
|
||||||
|
|
||||||
|
# pre_data
|
||||||
|
nfft = 2 ** 17
|
||||||
|
spec_1, freqs_1, times_1 = specgram(pre_data[0], Fs=1 / dt, detrend='mean', NFFT=nfft, noverlap=nfft * 0.95)
|
||||||
|
dbspec_1 = 10.0 * np.log10(spec_1) # in dB
|
||||||
|
power_1 = dbspec_1[:, 25]
|
||||||
|
|
||||||
|
fish_p_1 = power_1[(freqs_1 > 200) & (freqs_1 < 1000)]
|
||||||
|
fish_f_1 = freqs_1[(freqs_1 > 200) & (freqs_1 < 1000)]
|
||||||
|
|
||||||
|
index1 = np.argmax(fish_p_1)
|
||||||
|
eodf_1 = fish_f_1[index1]
|
||||||
|
eodf4_1 = eodf_1 * 4
|
||||||
|
|
||||||
|
lim0_1 = eodf4_1 - 20
|
||||||
|
lim1_1 = eodf4_1 + 20
|
||||||
|
|
||||||
|
df_1 = freqs_1[1] - freqs_1[0]
|
||||||
|
ix0_1 = int(np.floor(lim0_1 / df_1)) # back to index
|
||||||
|
ix1_1 = int(np.ceil(lim1_1 / df_1)) # back to index
|
||||||
|
spec4_1 = dbspec_1[ix0_1:ix1_1, :]
|
||||||
|
freq4_1 = freqs_1[ix0_1:ix1_1]
|
||||||
|
base4 = freq4_1[np.argmax(spec4_1, axis=0)] # all freqs at max specs over axis 0
|
||||||
|
bm = base4 - np.mean(base4) # data we take
|
||||||
|
cut_time_base = times_1[:len(base4)] - times_1[-1]
|
||||||
|
|
||||||
#plt.imshow(spec4, cmap='jet', origin='lower', extent=(times[0], times[-1], lim0, lim1), aspect='auto', vmin=-80, vmax=-10)
|
#plt.plot(cut_time_base, base4)
|
||||||
plt.plot(cut_times, jm)
|
|
||||||
plt.plot(cut_times, savgol)
|
|
||||||
#plt.ylim(lim0, lim1)
|
|
||||||
plt.show()
|
|
||||||
|
|
||||||
|
j = []
|
||||||
|
for idx, i in enumerate(times_0):
|
||||||
|
if i > 45 and i < 55:
|
||||||
|
j.append(jm[idx])
|
||||||
|
|
||||||
# nicht unbedingt filtern, einfach wie unten median/mean
|
r = np.median(j) - np.median(bm)
|
||||||
|
|
||||||
'''
|
deltaf.append(df[0])
|
||||||
res_df = sorted(zip(deltaf,response))
|
response.append(r)
|
||||||
|
embed()
|
||||||
|
res_df = sorted(zip(deltaf,response))#
|
||||||
|
|
||||||
np.save('res_df_%s' %ID, res_df)
|
np.save('res_df_%s_new' %ID, res_df)
|
||||||
'''
|
|
||||||
|
|
||||||
# problem: rohdaten(data, pre_data) lassen sich auf grund ihrer 1D-array struktur nicht savgol filtern
|
# problem: rohdaten(data, pre_data) lassen sich auf grund ihrer 1D-array struktur nicht savgol filtern
|
||||||
# diese bekomm ich nur über specgram in form von freq / time auftragen, was nicht mehr savgol gefiltert werden kann
|
# diese bekomm ich nur über specgram in form von freq / time auftragen, was nicht mehr savgol gefiltert werden kann
|
||||||
|
91
eigenmannia_jar_savgol.py
Normal file
91
eigenmannia_jar_savgol.py
Normal file
@ -0,0 +1,91 @@
|
|||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
import os
|
||||||
|
import nix_helpers as nh
|
||||||
|
from IPython import embed
|
||||||
|
from matplotlib.mlab import specgram
|
||||||
|
# from tqdm import tqdm
|
||||||
|
from jar_functions import parse_stimuli_dat
|
||||||
|
from jar_functions import norm_function_eigen
|
||||||
|
from jar_functions import mean_noise_cut_eigen
|
||||||
|
from jar_functions import get_time_zeros
|
||||||
|
from jar_functions import import_data_eigen
|
||||||
|
from jar_functions import get_new_zero_crossings
|
||||||
|
from scipy.signal import savgol_filter
|
||||||
|
|
||||||
|
base_path = 'D:\\jar_project\\JAR\\eigenmannia'
|
||||||
|
|
||||||
|
identifier = ['2013eigen13', '2015eigen16', '2015eigen17', '2015eigen19', '2020eigen22', '2020eigen32']
|
||||||
|
|
||||||
|
response = []
|
||||||
|
deltaf = []
|
||||||
|
for ID in identifier:
|
||||||
|
for dataset in os.listdir(os.path.join(base_path, ID)):
|
||||||
|
datapath = os.path.join(base_path, ID, dataset, '%s.nix' % dataset)
|
||||||
|
print(datapath)
|
||||||
|
stimuli_dat = os.path.join(base_path, ID, dataset, 'manualjar-eod.dat')
|
||||||
|
|
||||||
|
df, duration = parse_stimuli_dat(stimuli_dat)
|
||||||
|
dur = int(duration[0][0:2])
|
||||||
|
print(df)
|
||||||
|
|
||||||
|
data, pre_data, dt = import_data_eigen(datapath)
|
||||||
|
|
||||||
|
# data
|
||||||
|
nfft = 2 ** 17
|
||||||
|
spec_0, freqs_0, times_0 = specgram(data[0], Fs=1 / dt, detrend='mean', NFFT=nfft, noverlap=nfft * 0.95)
|
||||||
|
dbspec_0 = 10.0 * np.log10(spec_0) # in dB
|
||||||
|
power_0 = dbspec_0[:, 25]
|
||||||
|
|
||||||
|
fish_p_0 = power_0[(freqs_0 > 200) & (freqs_0 < 1000)]
|
||||||
|
fish_f_0 = freqs_0[(freqs_0 > 200) & (freqs_0 < 1000)]
|
||||||
|
|
||||||
|
index_0 = np.argmax(fish_p_0)
|
||||||
|
eodf_0 = fish_f_0[index_0]
|
||||||
|
eodf4_0 = eodf_0 * 4
|
||||||
|
|
||||||
|
lim0_0 = eodf4_0 - 20
|
||||||
|
lim1_0 = eodf4_0 + 20
|
||||||
|
|
||||||
|
df_0 = freqs_0[1] - freqs_0[0]
|
||||||
|
ix0_0 = int(np.floor(lim0_0 / df_0)) # back to index
|
||||||
|
ix1_0 = int(np.ceil(lim1_0 / df_0)) # back to index
|
||||||
|
spec4_0 = dbspec_0[ix0_0:ix1_0, :]
|
||||||
|
freq4_0 = freqs_0[ix0_0:ix1_0]
|
||||||
|
jar4 = freq4_0[np.argmax(spec4_0, axis=0)] # all freqs at max specs over axis 0
|
||||||
|
jm = jar4 - np.mean(jar4) # data we take
|
||||||
|
cut_time_jar = times_0[:len(jar4)]
|
||||||
|
|
||||||
|
# pre_data: base with nh.read_eod
|
||||||
|
time, eod = nh.read_eod(datapath, duration=2000) # anstatt dem import data mit tag manual jar - dann sollte onset wirklich bei 10 sec sein
|
||||||
|
|
||||||
|
wl = int(0.001 / (time[1] - time[0]) + 1)
|
||||||
|
filtered_eod = savgol_filter(eod, wl, 5, deriv=0, delta=time[1] - time[0])
|
||||||
|
zero_line_threshold = np.mean(eod)
|
||||||
|
time_zero, zero_idx = get_new_zero_crossings(time, filtered_eod, threshold=zero_line_threshold)
|
||||||
|
|
||||||
|
eod_interval = np.diff(time_zero)
|
||||||
|
time_zero = time_zero[:-1]
|
||||||
|
center_eod_time = time_zero + 0.5 * eod_interval
|
||||||
|
frequencies = 1 / eod_interval
|
||||||
|
|
||||||
|
j = []
|
||||||
|
for idx, i in enumerate(times_0):
|
||||||
|
if i > 45 and i < 55:
|
||||||
|
j.append(jm[idx])
|
||||||
|
|
||||||
|
b = []
|
||||||
|
for idx, i in enumerate(time_zero):
|
||||||
|
if i < 10:
|
||||||
|
b.append(frequencies[idx])
|
||||||
|
bm = b - np.mean(b)
|
||||||
|
|
||||||
|
r = np.median(j) - np.median(bm)
|
||||||
|
embed()
|
||||||
|
res_df = sorted(zip(deltaf, response)) #
|
||||||
|
|
||||||
|
np.save('res_df_%s_new' % ID, res_df)
|
||||||
|
|
||||||
|
# problem: rohdaten(data, pre_data) lassen sich auf grund ihrer 1D-array struktur nicht savgol filtern
|
||||||
|
# diese bekomm ich nur über specgram in form von freq / time auftragen, was nicht mehr savgol gefiltert werden kann
|
||||||
|
# jedoch könnte ich trotzdem einfach aus jar4 response herauslesen wobei dies dann weniger gefiltert wäre
|
4
eigenmannia_response.py
Normal file
4
eigenmannia_response.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
import os
|
||||||
|
from IPython import embed
|
25
gain_fit.py
25
gain_fit.py
@ -21,17 +21,24 @@ identifier = ['2018lepto1',
|
|||||||
'2020lepto19',
|
'2020lepto19',
|
||||||
'2020lepto20'
|
'2020lepto20'
|
||||||
]
|
]
|
||||||
|
tau = []
|
||||||
|
f_c = []
|
||||||
for ID in identifier:
|
for ID in identifier:
|
||||||
|
print(ID)
|
||||||
amf = np.load('amf_%s.npy' %ID)
|
amf = np.load('amf_%s.npy' %ID)
|
||||||
gain = np.load('gain_%s.npy' %ID)
|
gain = np.load('gain_%s.npy' %ID)
|
||||||
rms = np.load('rms_%s.npy' %ID)
|
|
||||||
thresh = np.load('thresh_%s.npy' % ID)
|
|
||||||
|
|
||||||
idx_arr = (rms < thresh) | (rms < np.mean(rms))
|
|
||||||
|
|
||||||
embed()
|
'''fig = plt.figure()
|
||||||
sinv, sinc = curve_fit(gain_curve_fit, amf[idx_arr], gain[idx_arr])
|
ax = fig.add_subplot(111)
|
||||||
print(sinv[0])
|
ax.plot(amf, gain, 'o')
|
||||||
|
ax.set_yscale('log')
|
||||||
|
ax.set_xscale('log')
|
||||||
|
plt.show()
|
||||||
|
'''
|
||||||
|
sinv, sinc = curve_fit(gain_curve_fit, amf, gain)
|
||||||
|
print('tau:', sinv[0])
|
||||||
|
tau.append(sinv[0])
|
||||||
f_cutoff = 1 / (2*np.pi*sinv[0])
|
f_cutoff = 1 / (2*np.pi*sinv[0])
|
||||||
print(f_cutoff)
|
print('f_cutoff:', f_cutoff)
|
||||||
|
f_c.append(f_cutoff)
|
||||||
|
#welche zeitkonstante ist das? was ist mit der zweiten?
|
@ -222,6 +222,26 @@ def get_time_zeros (time, ampl, threshold = 0.0):
|
|||||||
return zeropoints
|
return zeropoints
|
||||||
|
|
||||||
|
|
||||||
|
def get_new_zero_crossings(time, ampl, threshold=1):
|
||||||
|
"""
|
||||||
|
Ermittelt die Zeitpunkte der Nullpunkte der EOD-Kurve
|
||||||
|
param time: Zeitachse der Datei
|
||||||
|
param eod: EOD-Kurve aus Datei
|
||||||
|
return zeropoints: Liste mit Nullpunkten der EOD-Kurve
|
||||||
|
"""
|
||||||
|
new_time = time[:-1]
|
||||||
|
new_amp = ampl[:-1]
|
||||||
|
zero_idx = np.where((ampl[:-1] <= threshold) & (ampl[1:] > threshold))[0]
|
||||||
|
dx = np.mean(np.diff(new_time))
|
||||||
|
zeropoints = new_time[zero_idx]
|
||||||
|
|
||||||
|
for index, zeit_index in enumerate(zero_idx): # Daten glätten
|
||||||
|
dy = ampl[zeit_index + 1] - ampl[zeit_index]
|
||||||
|
m = dy / dx
|
||||||
|
x = (threshold - ampl[zeit_index]) / m
|
||||||
|
zeropoints[index] += x
|
||||||
|
return zeropoints, zero_idx
|
||||||
|
|
||||||
def sort_values(values):
|
def sort_values(values):
|
||||||
a = values[:2]
|
a = values[:2]
|
||||||
tau = np.array(sorted(values[2:], reverse=False))
|
tau = np.array(sorted(values[2:], reverse=False))
|
||||||
|
@ -7,7 +7,7 @@ from IPython import embed
|
|||||||
identifier = ['2013eigen13', '2015eigen16', '2015eigen17', '2015eigen19', '2020eigen22', '2020eigen32']
|
identifier = ['2013eigen13', '2015eigen16', '2015eigen17', '2015eigen19', '2020eigen22', '2020eigen32']
|
||||||
|
|
||||||
for ID in identifier:
|
for ID in identifier:
|
||||||
res_df = np.load('res_df_%s.npy' %ID)
|
res_df = np.load('res_df_%s_new.npy' %ID)
|
||||||
|
|
||||||
mres = []
|
mres = []
|
||||||
mdf = []
|
mdf = []
|
||||||
|
@ -11,20 +11,20 @@ from jar_functions import gain_curve_fit
|
|||||||
def take_second(elem): # function for taking the names out of files
|
def take_second(elem): # function for taking the names out of files
|
||||||
return elem[1]
|
return elem[1]
|
||||||
|
|
||||||
identifier = ['2018lepto1',
|
identifier = [#'2018lepto1',
|
||||||
'2018lepto4',
|
#'2018lepto4',
|
||||||
'2018lepto5',
|
#'2018lepto5',
|
||||||
'2018lepto76',
|
#'2018lepto76',
|
||||||
'2018lepto98',
|
#'2018lepto98',
|
||||||
'2019lepto03',
|
#'2019lepto03',
|
||||||
'2019lepto24',
|
#'2019lepto24',
|
||||||
'2019lepto27',
|
#'2019lepto27',
|
||||||
'2019lepto30',
|
#'2019lepto30',
|
||||||
'2020lepto04',
|
'2020lepto04',
|
||||||
'2020lepto06',
|
#'2020lepto06',
|
||||||
'2020lepto16',
|
#'2020lepto16',
|
||||||
'2020lepto19',
|
#'2020lepto19',
|
||||||
'2020lepto20'
|
#'2020lepto20'
|
||||||
]
|
]
|
||||||
for ident in identifier:
|
for ident in identifier:
|
||||||
|
|
||||||
@ -158,10 +158,9 @@ for ident in identifier:
|
|||||||
ax1.set_xlabel('envelope_frequency [Hz]')
|
ax1.set_xlabel('envelope_frequency [Hz]')
|
||||||
ax1.set_ylabel('RMS [Hz]')
|
ax1.set_ylabel('RMS [Hz]')
|
||||||
plt.legend()
|
plt.legend()
|
||||||
#pylab.show()
|
pylab.show()
|
||||||
|
|
||||||
|
np.save('gain_%s' %ident, mgain_arr[idx_arr])
|
||||||
|
np.save('amf_%s' %ident, amfreq_arr[idx_arr])
|
||||||
|
|
||||||
#np.save('gain_%s' %ident, mgain_arr[idx_arr])
|
|
||||||
#np.save('amf_%s' %ident, amfreq_arr[idx_arr])
|
|
||||||
np.save('rms_%s' %ident, rootmeansquare_arr)
|
|
||||||
np.save('thresh_%s' %ident, threshold_arr)
|
|
||||||
embed()
|
embed()
|
Loading…
Reference in New Issue
Block a user