efish_tracking/etrack/tracking_result.py
2021-06-01 11:48:11 +02:00

178 lines
6.9 KiB
Python

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import numbers as nb
import os
"""
x_0 = 0
width = 1230
y_0 = 0
height = 1100
x_factor = 0.81/width # Einheit m/px
y_factor = 0.81/height # Einheit m/px
center = (np.round(x_0 + width/2), np.round(y_0 + height/2))
center_meter = ((center[0] - x_0) * x_factor, (center[1] - y_0) * y_factor)
"""
class TrackingResult(object):
def __init__(self, results_file, x_0=0, y_0= 0, width_pixel=1230, height_pixel=1100, width_meter=0.81, height_meter=0.81) -> None:
super().__init__()
if not os.path.exists(results_file):
raise ValueError("File %s does not exist!" % results_file)
self._file_name = results_file
self.x_0 = x_0
self.y_0 = y_0
self.width_pix = width_pixel
self.width_m = width_meter
self.height_pix = height_pixel
self.height_m = height_meter
self.x_factor = self.width_m / self.width_pix # m/pix
self.y_factor = self.height_m / self.height_pix # m/pix
self.center = (np.round(self.x_0 + self.width_pix/2), np.round(self.y_0 + self.height_pix/2))
self.center_meter = ((self.center[0] - self.x_0) * self.x_factor, (self.center[1] - self.y_0) * self.y_factor)
self._data_frame = pd.read_hdf(results_file)
self._level_shape = self._data_frame.columns.levshape
self._scorer = self._data_frame.columns.levels[0].values
self._bodyparts = self._data_frame.columns.levels[1].values if self._level_shape[1] > 0 else []
self._positions = self._data_frame.columns.levels[2].values if self._level_shape[2] > 0 else []
def angle_to_center(self, bodypart=0, twopi=True, origin="topleft", min_likelihood=0.95):
if isinstance(bodypart, nb.Number):
bp = self._bodyparts[bodypart]
elif isinstance(bodypart, str) and bodypart in self._bodyparts:
bp = bodypart
else:
raise ValueError("Bodypart %s is not in dataframe!" % bodypart)
_, x, y, _, _ = self.position_values(bodypart=bp, min_likelihood=min_likelihood)
if x is None:
print("Error: no valid angles for %s" % self._file_name)
return []
x_meter = x - self.center_meter[0]
y_meter = y - self.center_meter[1]
if origin.lower() == "topleft":
y_meter *= -1
phi = np.arctan2(y_meter, x_meter) * 180 / np.pi
if twopi:
phi[phi < 0] = 360 + phi[phi < 0]
return phi
def coordinate_transformation(self, position):
x = (position[0] - self.x_0) * self.x_factor
y = (position[1] - self.y_0) * self.y_factor
return (x, y) #in m
@property
def filename(self):
return self._file_name
@property
def dataframe(self):
return self._data_frame
@property
def scorer(self):
return self._scorer
@property
def bodyparts(self):
return self._bodyparts
@property
def positions(self):
return self._positions
def position_values(self, scorer=0, bodypart=0, framerate=30, interpolate=True, min_likelihood=0.95):
"""returns the x and y positions in m and the likelihood of the positions.
Args:
scorer (int, optional): [description]. Defaults to 0.
bodypart (int, optional): [description]. Defaults to 0.
framerate (int, optional): [description]. Defaults to 30.
Raises:
ValueError: [description]
ValueError: [description]
Returns:
time [np.array]: the time axis
x [np.array]: the x-position in m
y [np.array]: the y-position in m
l [np.array]: the likelihood of the position estimation
bp string: the body part
[type]: [description]
"""
if isinstance(scorer, nb.Number):
sc = self._scorer[scorer]
elif isinstance(scorer, str) and scorer in self._scorer:
sc = scorer
else:
raise ValueError("Scorer %s is not in dataframe!" % scorer)
if isinstance(bodypart, nb.Number):
bp = self._bodyparts[bodypart]
elif isinstance(bodypart, str) and bodypart in self._bodyparts:
bp = bodypart
else:
raise ValueError("Bodypart %s is not in dataframe!" % bodypart)
x = self._data_frame[sc][bp]["x"] if "x" in self._positions else []
x = (np.asarray(x) - self.x_0) * self.x_factor
y = self._data_frame[sc][bp]["y"] if "y" in self._positions else []
y = (np.asarray(y) - self.y_0) * self.y_factor
l = self._data_frame[sc][bp]["likelihood"] if "likelihood" in self._positions else []
time = np.arange(len(self._data_frame))/framerate
time2 = time[l > min_likelihood]
if len(l[l > min_likelihood]) < 100:
print("%s has not datapoints with likelihood larger than %.2f" % (self._file_name, min_likelihood) )
return None, None, None, None, None
x2 = x[l > min_likelihood]
y2 = y[l > min_likelihood]
x3 = np.interp(time, time2, x2)
y3 = np.interp(time, time2, y2)
return time, x3, y3, l, bp
def plot(self, scorer=0, bodypart=0, threshold=0.9, framerate=30):
t, x, y, l, name = self.position_values(scorer=scorer, bodypart=bodypart, framerate=framerate)
plt.scatter(x[l > threshold], y[l > threshold], c=t[l > threshold], label=name)
plt.scatter(self.center_meter[0], self.center_meter[1], marker="*")
plt.plot(x[l > threshold], y[l > threshold])
plt.xlabel("x position")
plt.ylabel("y position")
plt.gca().invert_yaxis()
bar = plt.colorbar()
bar.set_label("time [s]")
plt.legend()
plt.show()
from IPython import embed
if __name__ == '__main__':
from IPython import embed
filename = "2020.12.04_lepto48DLC_resnet50_boldnessDec11shuffle1_200000.h5"
path = "/mnt/movies/merle_verena/boldness/labeled_videos/day_4/"
tr = TrackingResult(path+filename)
time, x, y, l, bp = tr.position_values(bodypart=2)
thresh = 0.95
time2 = time[l>thresh]
x2 = x[l>thresh]
y2 = y[l>thresh]
x3 = np.interp(time, time2, x2)
y3 = np.interp(time, time2, y2)
fig, axes = plt.subplots(3,1, sharex=True)
axes[0].plot(time, x)
axes[0].plot(time, x3)
axes[1].plot(time, y)
axes[1].plot(time, y3)
axes[2].plot(time, l)
plt.show()
embed()