This repository has been archived on 2021-05-17. You can view files and clone it, but cannot push or open issues or pull requests.
scientificComputing/linearalgebra/exercises/matrices.tex
2014-11-12 18:39:02 +01:00

206 lines
7.8 KiB
TeX

\documentclass[addpoints,10pt]{exam}
\usepackage{url}
\usepackage{color}
\usepackage{hyperref}
\usepackage{graphicx}
\usepackage{amsmath}
\pagestyle{headandfoot}
\runningheadrule
\firstpageheadrule
\firstpageheader{Scientific Computing}{Matrix multiplication}{Oct 28, 2014}
%\runningheader{Homework 01}{Page \thepage\ of \numpages}{23. October 2014}
\firstpagefooter{}{}{}
\runningfooter{}{}{}
\pointsinmargin
\bracketedpoints
%\printanswers
\shadedsolutions
\usepackage[mediumspace,mediumqspace,Gray]{SIunits} % \ohm, \micro
%%%%% listings %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{listings}
\lstset{
basicstyle=\ttfamily,
numbers=left,
showstringspaces=false,
language=Matlab,
breaklines=true,
breakautoindent=true,
columns=flexible,
frame=single,
captionpos=t,
xleftmargin=2em,
xrightmargin=1em,
aboveskip=10pt,
%title=\lstname,
title={\protect\filename@parse{\lstname}\protect\filename@base.\protect\filename@ext}
}
\begin{document}
\sffamily
%%%%%%%%%%%%%% Questions %%%%%%%%%%%%%%%%%%%%%%%%%
\begin{questions}
\question \textbf{Matrix multiplication}
Calculate the results of the following matrix multiplications and
confirm the result using matlab.
\[ \begin{pmatrix} 2 \\ -4 \\ -1 \end{pmatrix} \cdot
\begin{pmatrix} 3 & -4 & -4 \end{pmatrix} = \]
\[ \begin{pmatrix} 3 & -3 & -1 \end{pmatrix} \cdot
\begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} = \]
\[ \begin{pmatrix} 4 & -1 & 2 \\ -1 & 3 & 1 \\ 4 & -2 & 1 \\ 4 & -3 & -2 \end{pmatrix} \cdot
\begin{pmatrix} -2 & -2 & 0 & -3 \\ 3 & -2 & 1 & 0 \\ 1 & -2 & -4 & 0 \end{pmatrix} = \]
\[ \begin{pmatrix} 3 & 1 \\ 1 & 4 \end{pmatrix} \cdot
\begin{pmatrix} 0 & -3 & 4 & 1 \\ -2 & -1 & -2 & -3 \\ -3 & 1 & -2 & -3 \end{pmatrix} = \]
\[ \begin{pmatrix} 1 & 1 & -4 \end{pmatrix} \cdot
\begin{pmatrix} -1 \\ 2 \end{pmatrix} = \]
\[ \begin{pmatrix} 3 & 1 & -2 \\ 2 & 1 & 3 \\ 1 & 1 & 2 \end{pmatrix} \cdot
\begin{pmatrix} 2 & 2 \\ -3 & 3 \\ -4 & 1 \end{pmatrix} = \]
\[ \begin{pmatrix} 3 \\ 2 \end{pmatrix} \cdot
\begin{pmatrix} -3 & 2 & -4 & 1 \end{pmatrix} = \]
\[ \begin{pmatrix} -1 \\ -4 \\ -1 \end{pmatrix} \cdot
\begin{pmatrix} 0 & -4 & 1 \end{pmatrix} = \]
\[ \begin{pmatrix} 4 & -2 & -2 & -4 \end{pmatrix} \cdot
\begin{pmatrix} 2 \\ 2 \\ 1 \\ -1 \end{pmatrix} = \]
\[ \begin{pmatrix} -2 & -3 & -4 \\ 1 & 3 & 2 \\ -4 & -2 & 1 \end{pmatrix} \cdot
\begin{pmatrix} 1 & 2 & -2 & 4 \\ 3 & -1 & 1 & -1 \\ -3 & 2 & -1 & 2 \end{pmatrix} = \]
\[ \begin{pmatrix} 2 & -4 & 4 & 4 \\ -3 & 3 & 2 & 1 \end{pmatrix} \cdot
\begin{pmatrix} 0 & 3 & 4 & -2 \\ -4 & -2 & -1 & 0 \\ 1 & 2 & -4 & -4 \\ 3 & 2 & -2 & -4 \end{pmatrix} = \]
\[ \begin{pmatrix} 3 & 1 & -2 & -2 \end{pmatrix} \cdot
\begin{pmatrix} -4 \\ 3 \\ -2 \\ 4 \end{pmatrix} = \]
\[ \begin{pmatrix} -1 & 3 & 4 \end{pmatrix} \cdot
\begin{pmatrix} -1 \\ 4 \\ -3 \end{pmatrix} = \]
\[ \begin{pmatrix} 1 & -4 & 3 & 3 \end{pmatrix} \cdot
\begin{pmatrix} 1 \\ 0 \\ -4 \\ -1 \end{pmatrix} = \]
\[ \begin{pmatrix} -4 & -4 & -3 \\ -2 & -2 & 4 \\ -3 & 4 & -3 \end{pmatrix} \cdot
\begin{pmatrix} 0 & 3 & -4 & 4 \\ -1 & -2 & -3 & 1 \\ 1 & -2 & 2 & 0 \end{pmatrix} = \]
\[ \begin{pmatrix} -3 & 0 & 4 & 1 \\ 0 & 1 & 1 & 4 \end{pmatrix} \cdot
\begin{pmatrix} -4 & 3 & 1 & 4 \\ 1 & -4 & 1 & -3 \\ -4 & 0 & -4 & -4 \\ 1 & -2 & 4 & 4 \end{pmatrix} = \]
\[ \begin{pmatrix} 4 \\ 3 \\ 4 \\ -2 \end{pmatrix} \cdot
\begin{pmatrix} 2 & 4 & 3 & 3 \end{pmatrix} = \]
\[ \begin{pmatrix} 1 & 2 & 0 & 3 \end{pmatrix} \cdot
\begin{pmatrix} -3 \\ 1 \\ 1 \end{pmatrix} = \]
\[ \begin{pmatrix} -4 & 0 & -1 & 3 \\ 0 & -4 & 3 & -3 \end{pmatrix} \cdot
\begin{pmatrix} -1 & -4 & -1 \\ 3 & 2 & 0 \\ -2 & 3 & -2 \\ 1 & 2 & -2 \end{pmatrix} = \]
\[ \begin{pmatrix} 2 & 0 & 3 \\ 1 & -4 & -1 \\ 3 & 0 & -2 \end{pmatrix} \cdot
\begin{pmatrix} 0 & 2 & -1 & -2 \\ -1 & -1 & -3 & 4 \\ 2 & 4 & -4 & 1 \end{pmatrix} = \]
\[ \begin{pmatrix} -1 & 4 \end{pmatrix} \cdot
\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \]
\[ \begin{pmatrix} -4 & 3 \\ -4 & 0 \\ -2 & -2 \end{pmatrix} \cdot
\begin{pmatrix} 0 & 1 & -4 & 2 \\ 2 & 3 & -2 & -1 \end{pmatrix} = \]
\[ \begin{pmatrix} -2 & -1 \end{pmatrix} \cdot
\begin{pmatrix} 1 \\ -2 \end{pmatrix} = \]
\[ \begin{pmatrix} -2 & 2 & -2 & -3 \\ 2 & -4 & -2 & 2 \\ 0 & 2 & -2 & -2 \\ 1 & -2 & -2 & -2 \end{pmatrix} \cdot
\begin{pmatrix} 1 & -2 & 2 \\ -4 & -2 & -2 \\ 3 & 1 & 4 \\ -4 & 1 & -2 \end{pmatrix} = \]
\[ \begin{pmatrix} -1 & -3 & 0 & -1 \\ 4 & -2 & 1 & 2 \end{pmatrix} \cdot
\begin{pmatrix} -3 & -4 \\ -4 & 0 \end{pmatrix} = \]
\[ \begin{pmatrix} -1 & 1 & -2 \\ -2 & 2 & -4 \\ 1 & -2 & -2 \end{pmatrix} \cdot
\begin{pmatrix} -1 & 2 & -4 \\ 1 & 3 & 0 \\ 1 & 4 & -4 \end{pmatrix} = \]
\[ \begin{pmatrix} -3 & 3 \\ -3 & 2 \end{pmatrix} \cdot
\begin{pmatrix} 2 & -3 \\ -2 & -4 \end{pmatrix} = \]
\[ \begin{pmatrix} 1 & 1 & -3 \end{pmatrix} \cdot
\begin{pmatrix} -1 \\ -2 \\ 3 \end{pmatrix} = \]
\[ \begin{pmatrix} -4 & 2 & 1 \\ 4 & 0 & -2 \\ 2 & 3 & -3 \\ -2 & -2 & -2 \end{pmatrix} \cdot
\begin{pmatrix} -1 & 2 & 0 & -2 \\ 2 & -2 & 0 & -1 \\ -4 & 3 & -3 & 4 \end{pmatrix} = \]
\[ \begin{pmatrix} -2 & -4 & 2 & 4 \\ 3 & -3 & 2 & 1 \end{pmatrix} \cdot
\begin{pmatrix} 0 & 4 & -1 & -4 \\ 2 & 3 & -4 & -1 \\ 3 & 2 & -2 & 4 \end{pmatrix} = \]
\[ \begin{pmatrix} -3 & -2 & -1 & -3 \end{pmatrix} \cdot
\begin{pmatrix} 2 \\ -2 \\ 3 \\ -2 \end{pmatrix} = \]
\[ \begin{pmatrix} 4 & 4 & 2 & 3 \end{pmatrix} \cdot
\begin{pmatrix} 3 \\ 3 \\ -2 \\ 1 \end{pmatrix} = \]
\[ \begin{pmatrix} 3 & 2 & -2 \end{pmatrix} \cdot
\begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix} = \]
\[ \begin{pmatrix} 2 & -1 & 0 & -2 \\ 0 & -4 & -3 & -1 \end{pmatrix} \cdot
\begin{pmatrix} 4 & -3 & 2 & 4 \\ -3 & -4 & 1 & 1 \\ 1 & 3 & -2 & 3 \\ -1 & -2 & 3 & 0 \end{pmatrix} = \]
\[ \begin{pmatrix} -3 & -3 & 3 & 2 \\ 2 & 2 & -3 & 1 \end{pmatrix} \cdot
\begin{pmatrix} 0 & 1 \\ 4 & 2 \\ -3 & -1 \\ -3 & 4 \end{pmatrix} = \]
\[ \begin{pmatrix} -4 & -3 \end{pmatrix} \cdot
\begin{pmatrix} -2 \\ 3 \\ 4 \end{pmatrix} = \]
\[ \begin{pmatrix} 4 & 4 \end{pmatrix} \cdot
\begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix} = \]
\[ \begin{pmatrix} 1 & -2 & 3 \end{pmatrix} \cdot
\begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} = \]
\[ \begin{pmatrix} -3 & 2 \end{pmatrix} \cdot
\begin{pmatrix} -1 \\ 1 \end{pmatrix} = \]
\[ \begin{pmatrix} -2 & -4 & -4 & 0 \\ 0 & 3 & 4 & -4 \\ 4 & 2 & -2 & -4 \\ 0 & 0 & 4 & -1 \end{pmatrix} \cdot
\begin{pmatrix} 0 & -1 \\ -1 & 1 \\ -4 & -3 \\ 2 & 1 \end{pmatrix} = \]
\[ \begin{pmatrix} -3 \\ 3 \\ -3 \\ -4 \end{pmatrix} \cdot
\begin{pmatrix} 2 & 4 & -2 & 1 \end{pmatrix} = \]
\[ \begin{pmatrix} 2 \\ 0 \end{pmatrix} \cdot
\begin{pmatrix} -1 & -3 & -2 & 2 \end{pmatrix} = \]
\[ \begin{pmatrix} 0 & -4 & -4 & 4 \end{pmatrix} \cdot
\begin{pmatrix} 1 \\ 4 \\ 0 \\ 4 \end{pmatrix} = \]
\[ \begin{pmatrix} -3 & -1 \\ -3 & -1 \end{pmatrix} \cdot
\begin{pmatrix} 0 & -3 & 3 & -2 \\ -4 & 1 & -1 & 4 \end{pmatrix} = \]
\[ \begin{pmatrix} 4 & 0 \\ -1 & 4 \\ 1 & -3 \end{pmatrix} \cdot
\begin{pmatrix} -4 & -4 \\ -4 & 2 \end{pmatrix} = \]
\[ \begin{pmatrix} -1 \\ 3 \\ 2 \\ 4 \end{pmatrix} \cdot
\begin{pmatrix} 0 & -1 & 0 & 0 \end{pmatrix} = \]
\[ \begin{pmatrix} 3 \\ -2 \\ 2 \\ 3 \end{pmatrix} \cdot
\begin{pmatrix} -2 & -3 & -4 & 2 \end{pmatrix} = \]
\[ \begin{pmatrix} 2 & -2 & -4 & 4 \\ 0 & 1 & -3 & -2 \\ -1 & 3 & 0 & -2 \end{pmatrix} \cdot
\begin{pmatrix} -4 & 1 \\ -4 & 3 \end{pmatrix} = \]
\[ \begin{pmatrix} -4 & -1 & 3 \end{pmatrix} \cdot
\begin{pmatrix} -4 \\ -3 \\ 3 \end{pmatrix} = \]
\question \textbf{Automatic generation of exercises}
Write some matlab code that generates exercises like this one automatically! :-)
\end{questions}
\end{document}